1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: rsensor.c,v 2.8 2010/09/26 15:41:46 greg Exp $"; |
3 |
#endif |
4 |
|
5 |
/* |
6 |
* Compute sensor signal based on spatial sensitivity. |
7 |
* |
8 |
* Created Feb 2008 for Architectural Energy Corp. |
9 |
*/ |
10 |
|
11 |
#include "ray.h" |
12 |
#include "source.h" |
13 |
#include "view.h" |
14 |
#include "random.h" |
15 |
|
16 |
#define DEGREE (PI/180.) |
17 |
|
18 |
#define MAXNT 180 /* maximum number of theta divisions */ |
19 |
#define MAXNP 360 /* maximum number of phi divisions */ |
20 |
|
21 |
extern char *progname; /* global argv[0] */ |
22 |
extern int nowarn; /* don't report warnings? */ |
23 |
|
24 |
/* current sensor's perspective */ |
25 |
VIEW ourview = {VT_ANG,{0.,0.,0.},{0.,0.,1.},{1.,0.,0.}, |
26 |
1.,180.,180.,0.,0.,0.,0., |
27 |
{0.,0.,0.},{0.,0.,0.},0.,0.}; |
28 |
|
29 |
unsigned long nsamps = 10000; /* desired number of initial samples */ |
30 |
unsigned long nssamps = 9000; /* number of super-samples */ |
31 |
int ndsamps = 32; /* number of direct samples */ |
32 |
int nprocs = 1; /* number of rendering processes */ |
33 |
|
34 |
float *sensor = NULL; /* current sensor data */ |
35 |
int sntp[2]; /* number of sensor theta and phi angles */ |
36 |
float maxtheta; /* maximum theta value for this sensor */ |
37 |
float tvals[MAXNT+1]; /* theta prob. values (1-D table of 1-cos(t)) */ |
38 |
float *pvals = NULL; /* phi prob. values (2-D table in radians) */ |
39 |
int ntheta = 0; /* polar angle divisions */ |
40 |
int nphi = 0; /* azimuthal angle divisions */ |
41 |
double gscale = 1.; /* global scaling value */ |
42 |
|
43 |
#define s_theta(t) sensor[(t+1)*(sntp[1]+1)] |
44 |
#define s_phi(p) sensor[(p)+1] |
45 |
#define s_val(t,p) sensor[(p)+1+(t+1)*(sntp[1]+1)] |
46 |
|
47 |
static void comp_sensor(char *sfile); |
48 |
|
49 |
static void |
50 |
over_options() /* overriding options */ |
51 |
{ |
52 |
directvis = (ndsamps <= 0); |
53 |
do_irrad = 0; |
54 |
} |
55 |
|
56 |
static void |
57 |
print_defaults() /* print out default parameters */ |
58 |
{ |
59 |
over_options(); |
60 |
printf("-n %-9d\t\t\t# number of processes\n", nprocs); |
61 |
printf("-rd %-9ld\t\t\t# ray directions\n", nsamps); |
62 |
/* printf("-rs %-9ld\t\t\t# ray super-samples\n", nssamps); */ |
63 |
printf("-dn %-9d\t\t\t# direct number of samples\n", ndsamps); |
64 |
printf("-vp %f %f %f\t# view point\n", |
65 |
ourview.vp[0], ourview.vp[1], ourview.vp[2]); |
66 |
printf("-vd %f %f %f\t# view direction\n", |
67 |
ourview.vdir[0], ourview.vdir[1], ourview.vdir[2]); |
68 |
printf("-vu %f %f %f\t# view up\n", |
69 |
ourview.vup[0], ourview.vup[1], ourview.vup[2]); |
70 |
printf("-vo %f\t\t\t# view fore clipping distance\n", ourview.vfore); |
71 |
print_rdefaults(); |
72 |
} |
73 |
|
74 |
|
75 |
void |
76 |
quit(ec) /* make sure exit is called */ |
77 |
int ec; |
78 |
{ |
79 |
if (ray_pnprocs > 0) /* close children if any */ |
80 |
ray_pclose(0); |
81 |
exit(ec); |
82 |
} |
83 |
|
84 |
|
85 |
int |
86 |
main( |
87 |
int argc, |
88 |
char *argv[] |
89 |
) |
90 |
{ |
91 |
int doheader = 1; |
92 |
int optwarn = 0; |
93 |
int i, rval; |
94 |
|
95 |
progname = argv[0]; |
96 |
/* set up rendering defaults */ |
97 |
rand_samp = 1; |
98 |
dstrsrc = 0.65; |
99 |
srcsizerat = 0.1; |
100 |
directrelay = 3; |
101 |
ambounce = 1; |
102 |
maxdepth = -10; |
103 |
/* get options from command line */ |
104 |
for (i = 1; i < argc; i++) { |
105 |
while ((rval = expandarg(&argc, &argv, i)) > 0) |
106 |
; |
107 |
if (rval < 0) { |
108 |
sprintf(errmsg, "cannot expand '%s'", argv[i]); |
109 |
error(SYSTEM, errmsg); |
110 |
} |
111 |
if (argv[i][0] != '-') { |
112 |
if (i >= argc-1) |
113 |
break; /* final octree argument */ |
114 |
if (!ray_pnprocs) { |
115 |
over_options(); |
116 |
if (doheader) { /* print header */ |
117 |
newheader("RADIANCE", stdout); |
118 |
printargs(argc, argv, stdout); |
119 |
fputformat("ascii", stdout); |
120 |
putchar('\n'); |
121 |
} |
122 |
/* start process(es) */ |
123 |
if (strcmp(argv[argc-1], ".")) |
124 |
ray_pinit(argv[argc-1], nprocs); |
125 |
} |
126 |
comp_sensor(argv[i]); /* process a sensor file */ |
127 |
continue; |
128 |
} |
129 |
if (argv[i][1] == 'r') { /* sampling options */ |
130 |
if (argv[i][2] == 'd') |
131 |
nsamps = atol(argv[++i]); |
132 |
else if (argv[i][2] == 's') |
133 |
nssamps = atol(argv[++i]); |
134 |
else { |
135 |
sprintf(errmsg, "bad option at '%s'", argv[i]); |
136 |
error(USER, errmsg); |
137 |
} |
138 |
continue; |
139 |
} |
140 |
/* direct component samples */ |
141 |
if (argv[i][1] == 'd' && argv[i][2] == 'n') { |
142 |
ndsamps = atoi(argv[++i]); |
143 |
continue; |
144 |
} |
145 |
if (argv[i][1] == 'v') { /* next sensor view */ |
146 |
if (argv[i][2] == 'f') { |
147 |
rval = viewfile(argv[++i], &ourview, NULL); |
148 |
if (rval < 0) { |
149 |
sprintf(errmsg, |
150 |
"cannot open view file \"%s\"", |
151 |
argv[i]); |
152 |
error(SYSTEM, errmsg); |
153 |
} else if (rval == 0) { |
154 |
sprintf(errmsg, |
155 |
"bad view file \"%s\"", |
156 |
argv[i]); |
157 |
error(USER, errmsg); |
158 |
} |
159 |
continue; |
160 |
} |
161 |
rval = getviewopt(&ourview, argc-i, argv+i); |
162 |
if (rval >= 0) { |
163 |
i += rval; |
164 |
continue; |
165 |
} |
166 |
sprintf(errmsg, "bad view option at '%s'", argv[i]); |
167 |
error(USER, errmsg); |
168 |
} |
169 |
if (!strcmp(argv[i], "-w")) { /* toggle warnings */ |
170 |
nowarn = !nowarn; |
171 |
continue; |
172 |
} |
173 |
if (ray_pnprocs) { |
174 |
if (!optwarn++) |
175 |
error(WARNING, |
176 |
"rendering options should appear before first sensor"); |
177 |
} else if (!strcmp(argv[i], "-defaults")) { |
178 |
print_defaults(); |
179 |
return(0); |
180 |
} |
181 |
if (argv[i][1] == 'h') { /* header toggle */ |
182 |
doheader = !doheader; |
183 |
continue; |
184 |
} |
185 |
if (!strcmp(argv[i], "-n")) { /* number of processes */ |
186 |
nprocs = atoi(argv[++i]); |
187 |
if (nprocs <= 0) |
188 |
error(USER, "illegal number of processes"); |
189 |
continue; |
190 |
} |
191 |
rval = getrenderopt(argc-i, argv+i); |
192 |
if (rval < 0) { |
193 |
sprintf(errmsg, "bad render option at '%s'", argv[i]); |
194 |
error(USER, errmsg); |
195 |
} |
196 |
i += rval; |
197 |
} |
198 |
if (sensor == NULL) |
199 |
error(USER, i<argc ? "missing sensor file" : "missing octree"); |
200 |
quit(0); |
201 |
} |
202 |
|
203 |
/* Load sensor sensitivities (first row and column are angles) */ |
204 |
static float * |
205 |
load_sensor( |
206 |
int ntp[2], |
207 |
char *sfile |
208 |
) |
209 |
{ |
210 |
char linebuf[8192]; |
211 |
int nelem = 1000; |
212 |
float *sarr = (float *)malloc(sizeof(float)*nelem); |
213 |
FILE *fp; |
214 |
char *cp; |
215 |
int i; |
216 |
|
217 |
fp = frlibopen(sfile); |
218 |
if (fp == NULL) { |
219 |
sprintf(errmsg, "cannot open sensor file '%s'", sfile); |
220 |
error(SYSTEM, errmsg); |
221 |
} |
222 |
fgets(linebuf, sizeof(linebuf), fp); |
223 |
if (!strncmp(linebuf, "Elevation ", 10)) |
224 |
fgets(linebuf, sizeof(linebuf), fp); |
225 |
/* get phi values */ |
226 |
sarr[0] = .0f; |
227 |
if (strncmp(linebuf, "degrees", 7)) { |
228 |
sprintf(errmsg, "Missing 'degrees' in sensor file '%s'", sfile); |
229 |
error(USER, errmsg); |
230 |
} |
231 |
cp = sskip(linebuf); |
232 |
ntp[1] = 0; |
233 |
for ( ; ; ) { |
234 |
sarr[ntp[1]+1] = atof(cp); |
235 |
cp = fskip(cp); |
236 |
if (cp == NULL) |
237 |
break; |
238 |
if (ntp[1] > 1 && sarr[ntp[1]+1] <= sarr[ntp[1]]) { |
239 |
sprintf(errmsg, |
240 |
"Phi values not monotinically increasing in sensor file '%s'", |
241 |
sfile); |
242 |
error(USER, errmsg); |
243 |
} |
244 |
++ntp[1]; |
245 |
} |
246 |
ntp[0] = 0; /* get thetas + data */ |
247 |
while (fgets(linebuf, sizeof(linebuf), fp) != NULL) { |
248 |
++ntp[0]; |
249 |
if ((ntp[0]+1)*(ntp[1]+1) > nelem) { |
250 |
nelem += (nelem>>2) + ntp[1]; |
251 |
sarr = (float *)realloc((void *)sarr, |
252 |
sizeof(float)*nelem); |
253 |
if (sarr == NULL) |
254 |
error(SYSTEM, "out of memory in load_sensor()"); |
255 |
} |
256 |
cp = linebuf; |
257 |
i = ntp[0]*(ntp[1]+1); |
258 |
for ( ; ; ) { |
259 |
sarr[i] = atof(cp); |
260 |
cp = fskip(cp); |
261 |
if (cp == NULL) |
262 |
break; |
263 |
++i; |
264 |
} |
265 |
if (i == ntp[0]*(ntp[1]+1)) |
266 |
break; |
267 |
if (ntp[0] > 1 && sarr[ntp[0]*(ntp[1]+1)] <= |
268 |
sarr[(ntp[0]-1)*(ntp[1]+1)]) { |
269 |
sprintf(errmsg, |
270 |
"Theta values not monotinically increasing in sensor file '%s'", |
271 |
sfile); |
272 |
error(USER, errmsg); |
273 |
} |
274 |
if (i != (ntp[0]+1)*(ntp[1]+1)) { |
275 |
sprintf(errmsg, |
276 |
"bad column count near line %d in sensor file '%s'", |
277 |
ntp[0]+1, sfile); |
278 |
error(USER, errmsg); |
279 |
} |
280 |
} |
281 |
nelem = i; |
282 |
fclose(fp); |
283 |
errmsg[0] = '\0'; /* sanity checks */ |
284 |
if (ntp[0] <= 0) |
285 |
sprintf(errmsg, "no data in sensor file '%s'", sfile); |
286 |
else if (fabs(sarr[ntp[1]+1]) > FTINY) |
287 |
sprintf(errmsg, "minimum theta must be 0 in sensor file '%s'", |
288 |
sfile); |
289 |
else if (fabs(sarr[1]) > FTINY) |
290 |
sprintf(errmsg, "minimum phi must be 0 in sensor file '%s'", |
291 |
sfile); |
292 |
else if (sarr[ntp[1]] <= FTINY) |
293 |
sprintf(errmsg, |
294 |
"maximum phi must be positive in sensor file '%s'", |
295 |
sfile); |
296 |
else if (sarr[ntp[0]*(ntp[1]+1)] <= FTINY) |
297 |
sprintf(errmsg, |
298 |
"maximum theta must be positive in sensor file '%s'", |
299 |
sfile); |
300 |
if (errmsg[0]) |
301 |
error(USER, errmsg); |
302 |
return((float *)realloc((void *)sarr, sizeof(float)*nelem)); |
303 |
} |
304 |
|
305 |
/* Initialize probability table */ |
306 |
static void |
307 |
init_ptable( |
308 |
char *sfile |
309 |
) |
310 |
{ |
311 |
int samptot = nsamps; |
312 |
float *rowp, *rowp1; |
313 |
double rowsum[MAXNT], rowomega[MAXNT]; |
314 |
double thdiv[MAXNT+1], phdiv[MAXNP+1]; |
315 |
double tsize, psize; |
316 |
double prob, frac, frac1; |
317 |
int i, j, t, p; |
318 |
/* free old table */ |
319 |
if (sensor != NULL) |
320 |
free((void *)sensor); |
321 |
if (pvals != NULL) |
322 |
free((void *)pvals); |
323 |
if (sfile == NULL || !*sfile) { |
324 |
sensor = NULL; |
325 |
sntp[0] = sntp[1] = 0; |
326 |
pvals = NULL; |
327 |
ntheta = nphi = 0; |
328 |
return; |
329 |
} |
330 |
/* load sensor table */ |
331 |
sensor = load_sensor(sntp, sfile); |
332 |
if (sntp[0] > MAXNT) { |
333 |
sprintf(errmsg, "Too many theta rows in sensor file '%s'", |
334 |
sfile); |
335 |
error(INTERNAL, errmsg); |
336 |
} |
337 |
if (sntp[1] > MAXNP) { |
338 |
sprintf(errmsg, "Too many phi columns in sensor file '%s'", |
339 |
sfile); |
340 |
error(INTERNAL, errmsg); |
341 |
} |
342 |
/* compute boundary angles */ |
343 |
maxtheta = DEGREE*(1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2)); |
344 |
if (maxtheta > PI) |
345 |
maxtheta = PI; |
346 |
thdiv[0] = .0; |
347 |
for (t = 1; t < sntp[0]; t++) |
348 |
thdiv[t] = DEGREE/2.*(s_theta(t-1) + s_theta(t)); |
349 |
thdiv[sntp[0]] = maxtheta; |
350 |
phdiv[0] = DEGREE*(1.5f*s_phi(0) - 0.5f*s_phi(1)); |
351 |
for (p = 1; p < sntp[1]; p++) |
352 |
phdiv[p] = DEGREE/2.*(s_phi(p-1) + s_phi(p)); |
353 |
phdiv[sntp[1]] = DEGREE*(1.5f*s_phi(sntp[1]-1) - 0.5f*s_phi(sntp[1]-2)); |
354 |
/* size our table */ |
355 |
tsize = 1. - cos(maxtheta); |
356 |
psize = PI*tsize/maxtheta; |
357 |
if (sntp[0]*sntp[1] < samptot) /* don't overdo resolution */ |
358 |
samptot = sntp[0]*sntp[1]; |
359 |
ntheta = (int)(sqrt((double)samptot*tsize/psize) + 0.5); |
360 |
if (ntheta > MAXNT) |
361 |
ntheta = MAXNT; |
362 |
nphi = samptot/ntheta; |
363 |
pvals = (float *)malloc(sizeof(float)*(ntheta+1)*(nphi+1)); |
364 |
if (pvals == NULL) |
365 |
error(SYSTEM, "out of memory in init_ptable()"); |
366 |
gscale = .0; /* compute our inverse table */ |
367 |
for (i = 0; i < sntp[0]; i++) { |
368 |
rowp = &s_val(i,0); |
369 |
rowsum[i] = 1e-20; |
370 |
for (j = 0; j < sntp[1]; j++) |
371 |
rowsum[i] += *rowp++; |
372 |
rowomega[i] = cos(thdiv[i]) - cos(thdiv[i+1]); |
373 |
rowomega[i] *= 2.*PI / (double)sntp[1]; |
374 |
gscale += rowsum[i] * rowomega[i]; |
375 |
} |
376 |
if (gscale <= FTINY) { |
377 |
sprintf(errmsg, "Sensor values sum to zero in file '%s'", sfile); |
378 |
error(USER, errmsg); |
379 |
} |
380 |
for (i = 0; i < ntheta; i++) { |
381 |
prob = (double)i / (double)ntheta; |
382 |
for (t = 0; t < sntp[0]; t++) |
383 |
if ((prob -= rowsum[t]*rowomega[t]/gscale) <= .0) |
384 |
break; |
385 |
if (t >= sntp[0]) |
386 |
error(INTERNAL, "code error 1 in init_ptable()"); |
387 |
frac = 1. + prob/(rowsum[t]*rowomega[t]/gscale); |
388 |
tvals[i] = 1. - ( (1.-frac)*cos(thdiv[t]) + |
389 |
frac*cos(thdiv[t+1]) ); |
390 |
/* offset b/c sensor values are centered */ |
391 |
if (t <= 0 || frac > 0.5) |
392 |
frac -= 0.5; |
393 |
else if (t >= sntp[0]-1 || frac < 0.5) { |
394 |
frac += 0.5; |
395 |
--t; |
396 |
} |
397 |
pvals[i*(nphi+1)] = phdiv[0]; |
398 |
for (j = 1; j < nphi; j++) { |
399 |
prob = (double)j / (double)nphi; |
400 |
rowp = &s_val(t,0); |
401 |
rowp1 = &s_val(t+1,0); |
402 |
for (p = 0; p < sntp[1]; p++) |
403 |
if ((prob -= (1.-frac)*rowp[p]/rowsum[t] + |
404 |
frac*rowp1[p]/rowsum[t+1]) <= .0) |
405 |
break; |
406 |
if (p >= sntp[1]) { |
407 |
p = sntp[1] - 1; |
408 |
prob = .5; |
409 |
} |
410 |
frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t] |
411 |
+ frac*rowp1[p]/rowsum[t+1]); |
412 |
pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] + |
413 |
frac1*phdiv[p+1]; |
414 |
} |
415 |
pvals[i*(nphi+1) + nphi] = phdiv[sntp[1]]; |
416 |
} |
417 |
tvals[0] = .0f; |
418 |
tvals[ntheta] = (float)tsize; |
419 |
} |
420 |
|
421 |
/* Get normalized direction from random variables in [0,1) range */ |
422 |
static void |
423 |
get_direc( |
424 |
FVECT dvec, |
425 |
double x, |
426 |
double y |
427 |
) |
428 |
{ |
429 |
double xfrac = x*ntheta; |
430 |
int tndx = (int)xfrac; |
431 |
double yfrac = y*nphi; |
432 |
int pndx = (int)yfrac; |
433 |
double rad, phi; |
434 |
FVECT dv; |
435 |
int i; |
436 |
|
437 |
xfrac -= (double)tndx; |
438 |
yfrac -= (double)pndx; |
439 |
pndx += tndx*(nphi+1); |
440 |
|
441 |
dv[2] = 1. - ((1.-xfrac)*tvals[tndx] + xfrac*tvals[tndx+1]); |
442 |
rad = sqrt(1. - dv[2]*dv[2]); |
443 |
phi = (1.-yfrac)*pvals[pndx] + yfrac*pvals[pndx+1]; |
444 |
dv[0] = -rad*sin(phi); |
445 |
dv[1] = rad*cos(phi); |
446 |
for (i = 3; i--; ) |
447 |
dvec[i] = dv[0]*ourview.hvec[i] + |
448 |
dv[1]*ourview.vvec[i] + |
449 |
dv[2]*ourview.vdir[i] ; |
450 |
} |
451 |
|
452 |
/* Get sensor value in the specified direction (normalized) */ |
453 |
static float |
454 |
sens_val( |
455 |
FVECT dvec |
456 |
) |
457 |
{ |
458 |
FVECT dv; |
459 |
float theta, phi; |
460 |
int t, p; |
461 |
|
462 |
dv[2] = DOT(dvec, ourview.vdir); |
463 |
theta = (float)((1./DEGREE) * acos(dv[2])); |
464 |
if (theta >= maxtheta) |
465 |
return(.0f); |
466 |
dv[0] = DOT(dvec, ourview.hvec); |
467 |
dv[1] = DOT(dvec, ourview.vvec); |
468 |
phi = (float)((1./DEGREE) * atan2(-dv[0], dv[1])); |
469 |
while (phi < .0f) phi += 360.f; |
470 |
t = (int)(theta/maxtheta * sntp[0]); |
471 |
p = (int)(phi*(1./360.) * sntp[1]); |
472 |
/* hack for non-uniform sensor grid */ |
473 |
while (t+1 < sntp[0] && theta >= s_theta(t+1)) |
474 |
++t; |
475 |
while (t-1 >= 0 && theta <= s_theta(t-1)) |
476 |
--t; |
477 |
while (p+1 < sntp[1] && phi >= s_phi(p+1)) |
478 |
++p; |
479 |
while (p-1 >= 0 && phi <= s_phi(p-1)) |
480 |
--p; |
481 |
return(s_val(t,p)); |
482 |
} |
483 |
|
484 |
/* Print origin and direction */ |
485 |
static void |
486 |
print_ray( |
487 |
FVECT rorg, |
488 |
FVECT rdir |
489 |
) |
490 |
{ |
491 |
printf("%.6g %.6g %.6g %.8f %.8f %.8f\n", |
492 |
rorg[0], rorg[1], rorg[2], |
493 |
rdir[0], rdir[1], rdir[2]); |
494 |
} |
495 |
|
496 |
/* Compute sensor output */ |
497 |
static void |
498 |
comp_sensor( |
499 |
char *sfile |
500 |
) |
501 |
{ |
502 |
int ndirs = dstrsrc > FTINY ? ndsamps : |
503 |
ndsamps > 0 ? 1 : 0; |
504 |
char *err; |
505 |
int nt, np; |
506 |
COLOR vsum; |
507 |
RAY rr; |
508 |
double sf; |
509 |
int i, j; |
510 |
/* set view */ |
511 |
ourview.type = VT_ANG; |
512 |
ourview.horiz = ourview.vert = 180.; |
513 |
ourview.hoff = ourview.voff = .0; |
514 |
err = setview(&ourview); |
515 |
if (err != NULL) |
516 |
error(USER, err); |
517 |
/* assign probability table */ |
518 |
init_ptable(sfile); |
519 |
/* stratified MC sampling */ |
520 |
setcolor(vsum, .0f, .0f, .0f); |
521 |
nt = (int)(sqrt((double)nsamps*ntheta/nphi) + .5); |
522 |
np = nsamps/nt; |
523 |
sf = gscale/nsamps; |
524 |
for (i = 0; i < nt; i++) |
525 |
for (j = 0; j < np; j++) { |
526 |
VCOPY(rr.rorg, ourview.vp); |
527 |
get_direc(rr.rdir, (i+frandom())/nt, (j+frandom())/np); |
528 |
if (ourview.vfore > FTINY) |
529 |
VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore); |
530 |
if (!ray_pnprocs) { |
531 |
print_ray(rr.rorg, rr.rdir); |
532 |
continue; |
533 |
} |
534 |
rr.rmax = .0; |
535 |
rayorigin(&rr, PRIMARY, NULL, NULL); |
536 |
scalecolor(rr.rcoef, sf); |
537 |
if (ray_pqueue(&rr) == 1) |
538 |
addcolor(vsum, rr.rcol); |
539 |
} |
540 |
/* remaining rays pure MC */ |
541 |
for (i = nsamps - nt*np; i-- > 0; ) { |
542 |
VCOPY(rr.rorg, ourview.vp); |
543 |
get_direc(rr.rdir, frandom(), frandom()); |
544 |
if (ourview.vfore > FTINY) |
545 |
VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore); |
546 |
if (!ray_pnprocs) { |
547 |
print_ray(rr.rorg, rr.rdir); |
548 |
continue; |
549 |
} |
550 |
rr.rmax = .0; |
551 |
rayorigin(&rr, PRIMARY, NULL, NULL); |
552 |
scalecolor(rr.rcoef, sf); |
553 |
if (ray_pqueue(&rr) == 1) |
554 |
addcolor(vsum, rr.rcol); |
555 |
} |
556 |
if (!ray_pnprocs) /* just printing rays */ |
557 |
return; |
558 |
/* scale partial result */ |
559 |
scalecolor(vsum, sf); |
560 |
/* add direct component */ |
561 |
for (i = ndirs; i-- > 0; ) { |
562 |
SRCINDEX si; |
563 |
initsrcindex(&si); |
564 |
while (srcray(&rr, NULL, &si)) { |
565 |
sf = sens_val(rr.rdir); |
566 |
if (sf <= FTINY) |
567 |
continue; |
568 |
sf *= si.dom/ndirs; |
569 |
scalecolor(rr.rcoef, sf); |
570 |
if (ray_pqueue(&rr) == 1) { |
571 |
multcolor(rr.rcol, rr.rcoef); |
572 |
addcolor(vsum, rr.rcol); |
573 |
} |
574 |
} |
575 |
} |
576 |
/* finish our calculation */ |
577 |
while (ray_presult(&rr, 0) > 0) { |
578 |
multcolor(rr.rcol, rr.rcoef); |
579 |
addcolor(vsum, rr.rcol); |
580 |
} |
581 |
/* print our result */ |
582 |
printf("%.4e %.4e %.4e\n", colval(vsum,RED), |
583 |
colval(vsum,GRN), colval(vsum,BLU)); |
584 |
} |