ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rsensor.c
Revision: 2.9
Committed: Tue May 17 19:34:36 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.8: +40 -21 lines
Log Message:
Fixes pointed out by David G-M

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rsensor.c,v 2.8 2010/09/26 15:41:46 greg Exp $";
3 #endif
4
5 /*
6 * Compute sensor signal based on spatial sensitivity.
7 *
8 * Created Feb 2008 for Architectural Energy Corp.
9 */
10
11 #include "ray.h"
12 #include "source.h"
13 #include "view.h"
14 #include "random.h"
15
16 #define DEGREE (PI/180.)
17
18 #define MAXNT 180 /* maximum number of theta divisions */
19 #define MAXNP 360 /* maximum number of phi divisions */
20
21 extern char *progname; /* global argv[0] */
22 extern int nowarn; /* don't report warnings? */
23
24 /* current sensor's perspective */
25 VIEW ourview = {VT_ANG,{0.,0.,0.},{0.,0.,1.},{1.,0.,0.},
26 1.,180.,180.,0.,0.,0.,0.,
27 {0.,0.,0.},{0.,0.,0.},0.,0.};
28
29 unsigned long nsamps = 10000; /* desired number of initial samples */
30 unsigned long nssamps = 9000; /* number of super-samples */
31 int ndsamps = 32; /* number of direct samples */
32 int nprocs = 1; /* number of rendering processes */
33
34 float *sensor = NULL; /* current sensor data */
35 int sntp[2]; /* number of sensor theta and phi angles */
36 float maxtheta; /* maximum theta value for this sensor */
37 float tvals[MAXNT+1]; /* theta prob. values (1-D table of 1-cos(t)) */
38 float *pvals = NULL; /* phi prob. values (2-D table in radians) */
39 int ntheta = 0; /* polar angle divisions */
40 int nphi = 0; /* azimuthal angle divisions */
41 double gscale = 1.; /* global scaling value */
42
43 #define s_theta(t) sensor[(t+1)*(sntp[1]+1)]
44 #define s_phi(p) sensor[(p)+1]
45 #define s_val(t,p) sensor[(p)+1+(t+1)*(sntp[1]+1)]
46
47 static void comp_sensor(char *sfile);
48
49 static void
50 over_options() /* overriding options */
51 {
52 directvis = (ndsamps <= 0);
53 do_irrad = 0;
54 }
55
56 static void
57 print_defaults() /* print out default parameters */
58 {
59 over_options();
60 printf("-n %-9d\t\t\t# number of processes\n", nprocs);
61 printf("-rd %-9ld\t\t\t# ray directions\n", nsamps);
62 /* printf("-rs %-9ld\t\t\t# ray super-samples\n", nssamps); */
63 printf("-dn %-9d\t\t\t# direct number of samples\n", ndsamps);
64 printf("-vp %f %f %f\t# view point\n",
65 ourview.vp[0], ourview.vp[1], ourview.vp[2]);
66 printf("-vd %f %f %f\t# view direction\n",
67 ourview.vdir[0], ourview.vdir[1], ourview.vdir[2]);
68 printf("-vu %f %f %f\t# view up\n",
69 ourview.vup[0], ourview.vup[1], ourview.vup[2]);
70 printf("-vo %f\t\t\t# view fore clipping distance\n", ourview.vfore);
71 print_rdefaults();
72 }
73
74
75 void
76 quit(ec) /* make sure exit is called */
77 int ec;
78 {
79 if (ray_pnprocs > 0) /* close children if any */
80 ray_pclose(0);
81 exit(ec);
82 }
83
84
85 int
86 main(
87 int argc,
88 char *argv[]
89 )
90 {
91 int doheader = 1;
92 int optwarn = 0;
93 int i, rval;
94
95 progname = argv[0];
96 /* set up rendering defaults */
97 rand_samp = 1;
98 dstrsrc = 0.65;
99 srcsizerat = 0.1;
100 directrelay = 3;
101 ambounce = 1;
102 maxdepth = -10;
103 /* get options from command line */
104 for (i = 1; i < argc; i++) {
105 while ((rval = expandarg(&argc, &argv, i)) > 0)
106 ;
107 if (rval < 0) {
108 sprintf(errmsg, "cannot expand '%s'", argv[i]);
109 error(SYSTEM, errmsg);
110 }
111 if (argv[i][0] != '-') {
112 if (i >= argc-1)
113 break; /* final octree argument */
114 if (!ray_pnprocs) {
115 over_options();
116 if (doheader) { /* print header */
117 newheader("RADIANCE", stdout);
118 printargs(argc, argv, stdout);
119 fputformat("ascii", stdout);
120 putchar('\n');
121 }
122 /* start process(es) */
123 if (strcmp(argv[argc-1], "."))
124 ray_pinit(argv[argc-1], nprocs);
125 }
126 comp_sensor(argv[i]); /* process a sensor file */
127 continue;
128 }
129 if (argv[i][1] == 'r') { /* sampling options */
130 if (argv[i][2] == 'd')
131 nsamps = atol(argv[++i]);
132 else if (argv[i][2] == 's')
133 nssamps = atol(argv[++i]);
134 else {
135 sprintf(errmsg, "bad option at '%s'", argv[i]);
136 error(USER, errmsg);
137 }
138 continue;
139 }
140 /* direct component samples */
141 if (argv[i][1] == 'd' && argv[i][2] == 'n') {
142 ndsamps = atoi(argv[++i]);
143 continue;
144 }
145 if (argv[i][1] == 'v') { /* next sensor view */
146 if (argv[i][2] == 'f') {
147 rval = viewfile(argv[++i], &ourview, NULL);
148 if (rval < 0) {
149 sprintf(errmsg,
150 "cannot open view file \"%s\"",
151 argv[i]);
152 error(SYSTEM, errmsg);
153 } else if (rval == 0) {
154 sprintf(errmsg,
155 "bad view file \"%s\"",
156 argv[i]);
157 error(USER, errmsg);
158 }
159 continue;
160 }
161 rval = getviewopt(&ourview, argc-i, argv+i);
162 if (rval >= 0) {
163 i += rval;
164 continue;
165 }
166 sprintf(errmsg, "bad view option at '%s'", argv[i]);
167 error(USER, errmsg);
168 }
169 if (!strcmp(argv[i], "-w")) { /* toggle warnings */
170 nowarn = !nowarn;
171 continue;
172 }
173 if (ray_pnprocs) {
174 if (!optwarn++)
175 error(WARNING,
176 "rendering options should appear before first sensor");
177 } else if (!strcmp(argv[i], "-defaults")) {
178 print_defaults();
179 return(0);
180 }
181 if (argv[i][1] == 'h') { /* header toggle */
182 doheader = !doheader;
183 continue;
184 }
185 if (!strcmp(argv[i], "-n")) { /* number of processes */
186 nprocs = atoi(argv[++i]);
187 if (nprocs <= 0)
188 error(USER, "illegal number of processes");
189 continue;
190 }
191 rval = getrenderopt(argc-i, argv+i);
192 if (rval < 0) {
193 sprintf(errmsg, "bad render option at '%s'", argv[i]);
194 error(USER, errmsg);
195 }
196 i += rval;
197 }
198 if (sensor == NULL)
199 error(USER, i<argc ? "missing sensor file" : "missing octree");
200 quit(0);
201 }
202
203 /* Load sensor sensitivities (first row and column are angles) */
204 static float *
205 load_sensor(
206 int ntp[2],
207 char *sfile
208 )
209 {
210 char linebuf[8192];
211 int nelem = 1000;
212 float *sarr = (float *)malloc(sizeof(float)*nelem);
213 FILE *fp;
214 char *cp;
215 int i;
216
217 fp = frlibopen(sfile);
218 if (fp == NULL) {
219 sprintf(errmsg, "cannot open sensor file '%s'", sfile);
220 error(SYSTEM, errmsg);
221 }
222 fgets(linebuf, sizeof(linebuf), fp);
223 if (!strncmp(linebuf, "Elevation ", 10))
224 fgets(linebuf, sizeof(linebuf), fp);
225 /* get phi values */
226 sarr[0] = .0f;
227 if (strncmp(linebuf, "degrees", 7)) {
228 sprintf(errmsg, "Missing 'degrees' in sensor file '%s'", sfile);
229 error(USER, errmsg);
230 }
231 cp = sskip(linebuf);
232 ntp[1] = 0;
233 for ( ; ; ) {
234 sarr[ntp[1]+1] = atof(cp);
235 cp = fskip(cp);
236 if (cp == NULL)
237 break;
238 if (ntp[1] > 1 && sarr[ntp[1]+1] <= sarr[ntp[1]]) {
239 sprintf(errmsg,
240 "Phi values not monotinically increasing in sensor file '%s'",
241 sfile);
242 error(USER, errmsg);
243 }
244 ++ntp[1];
245 }
246 ntp[0] = 0; /* get thetas + data */
247 while (fgets(linebuf, sizeof(linebuf), fp) != NULL) {
248 ++ntp[0];
249 if ((ntp[0]+1)*(ntp[1]+1) > nelem) {
250 nelem += (nelem>>2) + ntp[1];
251 sarr = (float *)realloc((void *)sarr,
252 sizeof(float)*nelem);
253 if (sarr == NULL)
254 error(SYSTEM, "out of memory in load_sensor()");
255 }
256 cp = linebuf;
257 i = ntp[0]*(ntp[1]+1);
258 for ( ; ; ) {
259 sarr[i] = atof(cp);
260 cp = fskip(cp);
261 if (cp == NULL)
262 break;
263 ++i;
264 }
265 if (i == ntp[0]*(ntp[1]+1))
266 break;
267 if (ntp[0] > 1 && sarr[ntp[0]*(ntp[1]+1)] <=
268 sarr[(ntp[0]-1)*(ntp[1]+1)]) {
269 sprintf(errmsg,
270 "Theta values not monotinically increasing in sensor file '%s'",
271 sfile);
272 error(USER, errmsg);
273 }
274 if (i != (ntp[0]+1)*(ntp[1]+1)) {
275 sprintf(errmsg,
276 "bad column count near line %d in sensor file '%s'",
277 ntp[0]+1, sfile);
278 error(USER, errmsg);
279 }
280 }
281 nelem = i;
282 fclose(fp);
283 errmsg[0] = '\0'; /* sanity checks */
284 if (ntp[0] <= 0)
285 sprintf(errmsg, "no data in sensor file '%s'", sfile);
286 else if (fabs(sarr[ntp[1]+1]) > FTINY)
287 sprintf(errmsg, "minimum theta must be 0 in sensor file '%s'",
288 sfile);
289 else if (fabs(sarr[1]) > FTINY)
290 sprintf(errmsg, "minimum phi must be 0 in sensor file '%s'",
291 sfile);
292 else if (sarr[ntp[1]] <= FTINY)
293 sprintf(errmsg,
294 "maximum phi must be positive in sensor file '%s'",
295 sfile);
296 else if (sarr[ntp[0]*(ntp[1]+1)] <= FTINY)
297 sprintf(errmsg,
298 "maximum theta must be positive in sensor file '%s'",
299 sfile);
300 if (errmsg[0])
301 error(USER, errmsg);
302 return((float *)realloc((void *)sarr, sizeof(float)*nelem));
303 }
304
305 /* Initialize probability table */
306 static void
307 init_ptable(
308 char *sfile
309 )
310 {
311 int samptot = nsamps;
312 float *rowp, *rowp1;
313 double rowsum[MAXNT], rowomega[MAXNT];
314 double thdiv[MAXNT+1], phdiv[MAXNP+1];
315 double tsize, psize;
316 double prob, frac, frac1;
317 int i, j, t, p;
318 /* free old table */
319 if (sensor != NULL)
320 free((void *)sensor);
321 if (pvals != NULL)
322 free((void *)pvals);
323 if (sfile == NULL || !*sfile) {
324 sensor = NULL;
325 sntp[0] = sntp[1] = 0;
326 pvals = NULL;
327 ntheta = nphi = 0;
328 return;
329 }
330 /* load sensor table */
331 sensor = load_sensor(sntp, sfile);
332 if (sntp[0] > MAXNT) {
333 sprintf(errmsg, "Too many theta rows in sensor file '%s'",
334 sfile);
335 error(INTERNAL, errmsg);
336 }
337 if (sntp[1] > MAXNP) {
338 sprintf(errmsg, "Too many phi columns in sensor file '%s'",
339 sfile);
340 error(INTERNAL, errmsg);
341 }
342 /* compute boundary angles */
343 maxtheta = DEGREE*(1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2));
344 if (maxtheta > PI)
345 maxtheta = PI;
346 thdiv[0] = .0;
347 for (t = 1; t < sntp[0]; t++)
348 thdiv[t] = DEGREE/2.*(s_theta(t-1) + s_theta(t));
349 thdiv[sntp[0]] = maxtheta;
350 phdiv[0] = DEGREE*(1.5f*s_phi(0) - 0.5f*s_phi(1));
351 for (p = 1; p < sntp[1]; p++)
352 phdiv[p] = DEGREE/2.*(s_phi(p-1) + s_phi(p));
353 phdiv[sntp[1]] = DEGREE*(1.5f*s_phi(sntp[1]-1) - 0.5f*s_phi(sntp[1]-2));
354 /* size our table */
355 tsize = 1. - cos(maxtheta);
356 psize = PI*tsize/maxtheta;
357 if (sntp[0]*sntp[1] < samptot) /* don't overdo resolution */
358 samptot = sntp[0]*sntp[1];
359 ntheta = (int)(sqrt((double)samptot*tsize/psize) + 0.5);
360 if (ntheta > MAXNT)
361 ntheta = MAXNT;
362 nphi = samptot/ntheta;
363 pvals = (float *)malloc(sizeof(float)*(ntheta+1)*(nphi+1));
364 if (pvals == NULL)
365 error(SYSTEM, "out of memory in init_ptable()");
366 gscale = .0; /* compute our inverse table */
367 for (i = 0; i < sntp[0]; i++) {
368 rowp = &s_val(i,0);
369 rowsum[i] = 1e-20;
370 for (j = 0; j < sntp[1]; j++)
371 rowsum[i] += *rowp++;
372 rowomega[i] = cos(thdiv[i]) - cos(thdiv[i+1]);
373 rowomega[i] *= 2.*PI / (double)sntp[1];
374 gscale += rowsum[i] * rowomega[i];
375 }
376 if (gscale <= FTINY) {
377 sprintf(errmsg, "Sensor values sum to zero in file '%s'", sfile);
378 error(USER, errmsg);
379 }
380 for (i = 0; i < ntheta; i++) {
381 prob = (double)i / (double)ntheta;
382 for (t = 0; t < sntp[0]; t++)
383 if ((prob -= rowsum[t]*rowomega[t]/gscale) <= .0)
384 break;
385 if (t >= sntp[0])
386 error(INTERNAL, "code error 1 in init_ptable()");
387 frac = 1. + prob/(rowsum[t]*rowomega[t]/gscale);
388 tvals[i] = 1. - ( (1.-frac)*cos(thdiv[t]) +
389 frac*cos(thdiv[t+1]) );
390 /* offset b/c sensor values are centered */
391 if (t <= 0 || frac > 0.5)
392 frac -= 0.5;
393 else if (t >= sntp[0]-1 || frac < 0.5) {
394 frac += 0.5;
395 --t;
396 }
397 pvals[i*(nphi+1)] = phdiv[0];
398 for (j = 1; j < nphi; j++) {
399 prob = (double)j / (double)nphi;
400 rowp = &s_val(t,0);
401 rowp1 = &s_val(t+1,0);
402 for (p = 0; p < sntp[1]; p++)
403 if ((prob -= (1.-frac)*rowp[p]/rowsum[t] +
404 frac*rowp1[p]/rowsum[t+1]) <= .0)
405 break;
406 if (p >= sntp[1]) {
407 p = sntp[1] - 1;
408 prob = .5;
409 }
410 frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t]
411 + frac*rowp1[p]/rowsum[t+1]);
412 pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] +
413 frac1*phdiv[p+1];
414 }
415 pvals[i*(nphi+1) + nphi] = phdiv[sntp[1]];
416 }
417 tvals[0] = .0f;
418 tvals[ntheta] = (float)tsize;
419 }
420
421 /* Get normalized direction from random variables in [0,1) range */
422 static void
423 get_direc(
424 FVECT dvec,
425 double x,
426 double y
427 )
428 {
429 double xfrac = x*ntheta;
430 int tndx = (int)xfrac;
431 double yfrac = y*nphi;
432 int pndx = (int)yfrac;
433 double rad, phi;
434 FVECT dv;
435 int i;
436
437 xfrac -= (double)tndx;
438 yfrac -= (double)pndx;
439 pndx += tndx*(nphi+1);
440
441 dv[2] = 1. - ((1.-xfrac)*tvals[tndx] + xfrac*tvals[tndx+1]);
442 rad = sqrt(1. - dv[2]*dv[2]);
443 phi = (1.-yfrac)*pvals[pndx] + yfrac*pvals[pndx+1];
444 dv[0] = -rad*sin(phi);
445 dv[1] = rad*cos(phi);
446 for (i = 3; i--; )
447 dvec[i] = dv[0]*ourview.hvec[i] +
448 dv[1]*ourview.vvec[i] +
449 dv[2]*ourview.vdir[i] ;
450 }
451
452 /* Get sensor value in the specified direction (normalized) */
453 static float
454 sens_val(
455 FVECT dvec
456 )
457 {
458 FVECT dv;
459 float theta, phi;
460 int t, p;
461
462 dv[2] = DOT(dvec, ourview.vdir);
463 theta = (float)((1./DEGREE) * acos(dv[2]));
464 if (theta >= maxtheta)
465 return(.0f);
466 dv[0] = DOT(dvec, ourview.hvec);
467 dv[1] = DOT(dvec, ourview.vvec);
468 phi = (float)((1./DEGREE) * atan2(-dv[0], dv[1]));
469 while (phi < .0f) phi += 360.f;
470 t = (int)(theta/maxtheta * sntp[0]);
471 p = (int)(phi*(1./360.) * sntp[1]);
472 /* hack for non-uniform sensor grid */
473 while (t+1 < sntp[0] && theta >= s_theta(t+1))
474 ++t;
475 while (t-1 >= 0 && theta <= s_theta(t-1))
476 --t;
477 while (p+1 < sntp[1] && phi >= s_phi(p+1))
478 ++p;
479 while (p-1 >= 0 && phi <= s_phi(p-1))
480 --p;
481 return(s_val(t,p));
482 }
483
484 /* Print origin and direction */
485 static void
486 print_ray(
487 FVECT rorg,
488 FVECT rdir
489 )
490 {
491 printf("%.6g %.6g %.6g %.8f %.8f %.8f\n",
492 rorg[0], rorg[1], rorg[2],
493 rdir[0], rdir[1], rdir[2]);
494 }
495
496 /* Compute sensor output */
497 static void
498 comp_sensor(
499 char *sfile
500 )
501 {
502 int ndirs = dstrsrc > FTINY ? ndsamps :
503 ndsamps > 0 ? 1 : 0;
504 char *err;
505 int nt, np;
506 COLOR vsum;
507 RAY rr;
508 double sf;
509 int i, j;
510 /* set view */
511 ourview.type = VT_ANG;
512 ourview.horiz = ourview.vert = 180.;
513 ourview.hoff = ourview.voff = .0;
514 err = setview(&ourview);
515 if (err != NULL)
516 error(USER, err);
517 /* assign probability table */
518 init_ptable(sfile);
519 /* stratified MC sampling */
520 setcolor(vsum, .0f, .0f, .0f);
521 nt = (int)(sqrt((double)nsamps*ntheta/nphi) + .5);
522 np = nsamps/nt;
523 sf = gscale/nsamps;
524 for (i = 0; i < nt; i++)
525 for (j = 0; j < np; j++) {
526 VCOPY(rr.rorg, ourview.vp);
527 get_direc(rr.rdir, (i+frandom())/nt, (j+frandom())/np);
528 if (ourview.vfore > FTINY)
529 VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore);
530 if (!ray_pnprocs) {
531 print_ray(rr.rorg, rr.rdir);
532 continue;
533 }
534 rr.rmax = .0;
535 rayorigin(&rr, PRIMARY, NULL, NULL);
536 scalecolor(rr.rcoef, sf);
537 if (ray_pqueue(&rr) == 1)
538 addcolor(vsum, rr.rcol);
539 }
540 /* remaining rays pure MC */
541 for (i = nsamps - nt*np; i-- > 0; ) {
542 VCOPY(rr.rorg, ourview.vp);
543 get_direc(rr.rdir, frandom(), frandom());
544 if (ourview.vfore > FTINY)
545 VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore);
546 if (!ray_pnprocs) {
547 print_ray(rr.rorg, rr.rdir);
548 continue;
549 }
550 rr.rmax = .0;
551 rayorigin(&rr, PRIMARY, NULL, NULL);
552 scalecolor(rr.rcoef, sf);
553 if (ray_pqueue(&rr) == 1)
554 addcolor(vsum, rr.rcol);
555 }
556 if (!ray_pnprocs) /* just printing rays */
557 return;
558 /* scale partial result */
559 scalecolor(vsum, sf);
560 /* add direct component */
561 for (i = ndirs; i-- > 0; ) {
562 SRCINDEX si;
563 initsrcindex(&si);
564 while (srcray(&rr, NULL, &si)) {
565 sf = sens_val(rr.rdir);
566 if (sf <= FTINY)
567 continue;
568 sf *= si.dom/ndirs;
569 scalecolor(rr.rcoef, sf);
570 if (ray_pqueue(&rr) == 1) {
571 multcolor(rr.rcol, rr.rcoef);
572 addcolor(vsum, rr.rcol);
573 }
574 }
575 }
576 /* finish our calculation */
577 while (ray_presult(&rr, 0) > 0) {
578 multcolor(rr.rcol, rr.rcoef);
579 addcolor(vsum, rr.rcol);
580 }
581 /* print our result */
582 printf("%.4e %.4e %.4e\n", colval(vsum,RED),
583 colval(vsum,GRN), colval(vsum,BLU));
584 }