1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: rsensor.c,v 2.4 2008/02/22 21:52:10 greg Exp $"; |
3 |
#endif |
4 |
|
5 |
/* |
6 |
* Compute sensor signal based on spatial sensitivity. |
7 |
* |
8 |
* Created Feb 2008 for Architectural Energy Corp. |
9 |
*/ |
10 |
|
11 |
#include "ray.h" |
12 |
#include "source.h" |
13 |
#include "view.h" |
14 |
#include "random.h" |
15 |
|
16 |
#define DEGREE (PI/180.) |
17 |
|
18 |
#define MAXNT 180 /* maximum number of theta divisions */ |
19 |
#define MAXNP 360 /* maximum number of phi divisions */ |
20 |
|
21 |
extern char *progname; /* global argv[0] */ |
22 |
extern int nowarn; /* don't report warnings? */ |
23 |
|
24 |
/* current sensor's perspective */ |
25 |
VIEW ourview = {VT_ANG,{0.,0.,0.},{0.,0.,1.},{1.,0.,0.}, |
26 |
1.,180.,180.,0.,0.,0.,0., |
27 |
{0.,0.,0.},{0.,0.,0.},0.,0.}; |
28 |
|
29 |
unsigned long nsamps = 10000; /* desired number of initial samples */ |
30 |
unsigned long nssamps = 9000; /* number of super-samples */ |
31 |
int ndsamps = 32; /* number of direct samples */ |
32 |
int nprocs = 1; /* number of rendering processes */ |
33 |
|
34 |
float *sensor = NULL; /* current sensor data */ |
35 |
int sntp[2]; /* number of sensor theta and phi angles */ |
36 |
float maxtheta; /* maximum theta value for this sensor */ |
37 |
float tvals[MAXNT+1]; /* theta values (1-D table of 1-cos(t)) */ |
38 |
float *pvals = NULL; /* phi values (2-D table in radians) */ |
39 |
int ntheta = 0; /* polar angle divisions */ |
40 |
int nphi = 0; /* azimuthal angle divisions */ |
41 |
double gscale = 1.; /* global scaling value */ |
42 |
|
43 |
#define s_theta(t) sensor[(t+1)*(sntp[1]+1)] |
44 |
#define s_phi(p) sensor[(p)+1] |
45 |
#define s_val(t,p) sensor[(p)+1+(t+1)*(sntp[1]+1)] |
46 |
|
47 |
static void comp_sensor(char *sfile); |
48 |
|
49 |
static void |
50 |
over_options() /* overriding options */ |
51 |
{ |
52 |
directvis = (ndsamps <= 0); |
53 |
do_irrad = 0; |
54 |
} |
55 |
|
56 |
static void |
57 |
print_defaults() /* print out default parameters */ |
58 |
{ |
59 |
over_options(); |
60 |
printf("-n %-9d\t\t\t# number of processes\n", nprocs); |
61 |
printf("-rd %-9ld\t\t\t# ray directions\n", nsamps); |
62 |
/* printf("-rs %-9ld\t\t\t# ray super-samples\n", nssamps); */ |
63 |
printf("-dn %-9d\t\t\t# direct number of samples\n", ndsamps); |
64 |
printf("-vp %f %f %f\t# view point\n", |
65 |
ourview.vp[0], ourview.vp[1], ourview.vp[2]); |
66 |
printf("-vd %f %f %f\t# view direction\n", |
67 |
ourview.vdir[0], ourview.vdir[1], ourview.vdir[2]); |
68 |
printf("-vu %f %f %f\t# view up\n", |
69 |
ourview.vup[0], ourview.vup[1], ourview.vup[2]); |
70 |
printf("-vo %f\t\t\t# view fore clipping distance\n", ourview.vfore); |
71 |
print_rdefaults(); |
72 |
} |
73 |
|
74 |
int |
75 |
main( |
76 |
int argc, |
77 |
char *argv[] |
78 |
) |
79 |
{ |
80 |
int doheader = 1; |
81 |
int optwarn = 0; |
82 |
int i, rval; |
83 |
|
84 |
progname = argv[0]; |
85 |
/* set up rendering defaults */ |
86 |
rand_samp = 1; |
87 |
dstrsrc = 0.5; |
88 |
srcsizerat = 0.1; |
89 |
directrelay = 3; |
90 |
ambounce = 1; |
91 |
maxdepth = -10; |
92 |
/* get options from command line */ |
93 |
for (i = 1; i < argc; i++) { |
94 |
while ((rval = expandarg(&argc, &argv, i)) > 0) |
95 |
; |
96 |
if (rval < 0) { |
97 |
sprintf(errmsg, "cannot expand '%s'", argv[i]); |
98 |
error(SYSTEM, errmsg); |
99 |
} |
100 |
if (argv[i][0] != '-') { |
101 |
if (i >= argc-1) |
102 |
break; /* final octree argument */ |
103 |
if (!ray_pnprocs) { |
104 |
over_options(); |
105 |
if (doheader) { /* print header */ |
106 |
printargs(argc, argv, stdout); |
107 |
fputformat("ascii", stdout); |
108 |
putchar('\n'); |
109 |
} |
110 |
/* start process(es) */ |
111 |
ray_pinit(argv[argc-1], nprocs); |
112 |
} |
113 |
comp_sensor(argv[i]); /* process a sensor file */ |
114 |
continue; |
115 |
} |
116 |
if (argv[i][1] == 'r') { /* sampling options */ |
117 |
if (argv[i][2] == 'd') |
118 |
nsamps = atol(argv[++i]); |
119 |
else if (argv[i][2] == 's') |
120 |
nssamps = atol(argv[++i]); |
121 |
else { |
122 |
sprintf(errmsg, "bad option at '%s'", argv[i]); |
123 |
error(USER, errmsg); |
124 |
} |
125 |
continue; |
126 |
} |
127 |
/* direct component samples */ |
128 |
if (argv[i][1] == 'd' && argv[i][2] == 'n') { |
129 |
ndsamps = atoi(argv[++i]); |
130 |
continue; |
131 |
} |
132 |
if (argv[i][1] == 'v') { /* next sensor view */ |
133 |
if (argv[i][2] == 'f') { |
134 |
rval = viewfile(argv[++i], &ourview, NULL); |
135 |
if (rval < 0) { |
136 |
sprintf(errmsg, |
137 |
"cannot open view file \"%s\"", |
138 |
argv[i]); |
139 |
error(SYSTEM, errmsg); |
140 |
} else if (rval == 0) { |
141 |
sprintf(errmsg, |
142 |
"bad view file \"%s\"", |
143 |
argv[i]); |
144 |
error(USER, errmsg); |
145 |
} |
146 |
continue; |
147 |
} |
148 |
rval = getviewopt(&ourview, argc-i, argv+i); |
149 |
if (rval >= 0) { |
150 |
i += rval; |
151 |
continue; |
152 |
} |
153 |
sprintf(errmsg, "bad view option at '%s'", argv[i]); |
154 |
error(USER, errmsg); |
155 |
} |
156 |
if (!strcmp(argv[i], "-w")) { /* toggle warnings */ |
157 |
nowarn = !nowarn; |
158 |
continue; |
159 |
} |
160 |
if (ray_pnprocs) { |
161 |
if (!optwarn++) |
162 |
error(WARNING, |
163 |
"rendering options should appear before first sensor"); |
164 |
} else if (!strcmp(argv[i], "-defaults")) { |
165 |
print_defaults(); |
166 |
return(0); |
167 |
} |
168 |
if (argv[i][1] == 'h') { /* header toggle */ |
169 |
doheader = !doheader; |
170 |
continue; |
171 |
} |
172 |
if (!strcmp(argv[i], "-n")) { /* number of processes */ |
173 |
nprocs = atoi(argv[++i]); |
174 |
if (nprocs <= 0) |
175 |
error(USER, "illegal number of processes"); |
176 |
continue; |
177 |
} |
178 |
rval = getrenderopt(argc-i, argv+i); |
179 |
if (rval < 0) { |
180 |
sprintf(errmsg, "bad render option at '%s'", argv[i]); |
181 |
error(USER, errmsg); |
182 |
} |
183 |
i += rval; |
184 |
} |
185 |
if (!ray_pnprocs) |
186 |
error(USER, i<argc ? "missing sensor file" : "missing octree"); |
187 |
quit(0); |
188 |
} |
189 |
|
190 |
/* Load sensor sensitivities (first row and column are angles) */ |
191 |
static float * |
192 |
load_sensor( |
193 |
int ntp[2], |
194 |
char *sfile |
195 |
) |
196 |
{ |
197 |
char linebuf[8192]; |
198 |
int nelem = 1000; |
199 |
float *sarr = (float *)malloc(sizeof(float)*nelem); |
200 |
FILE *fp; |
201 |
char *cp; |
202 |
int i; |
203 |
|
204 |
fp = frlibopen(sfile); |
205 |
if (fp == NULL) { |
206 |
sprintf(errmsg, "cannot open sensor file '%s'", sfile); |
207 |
error(SYSTEM, errmsg); |
208 |
} |
209 |
fgets(linebuf, sizeof(linebuf), fp); |
210 |
if (!strncmp(linebuf, "Elevation ", 10)) |
211 |
fgets(linebuf, sizeof(linebuf), fp); |
212 |
/* get phi values */ |
213 |
sarr[0] = .0f; |
214 |
if (strncmp(linebuf, "degrees", 7)) { |
215 |
sprintf(errmsg, "Missing 'degrees' in sensor file '%s'", sfile); |
216 |
error(USER, errmsg); |
217 |
} |
218 |
cp = sskip(linebuf); |
219 |
ntp[1] = 0; |
220 |
for ( ; ; ) { |
221 |
sarr[ntp[1]+1] = atof(cp); |
222 |
cp = fskip(cp); |
223 |
if (cp == NULL) |
224 |
break; |
225 |
++ntp[1]; |
226 |
} |
227 |
ntp[0] = 0; /* get thetas + data */ |
228 |
while (fgets(linebuf, sizeof(linebuf), fp) != NULL) { |
229 |
++ntp[0]; |
230 |
if ((ntp[0]+1)*(ntp[1]+1) > nelem) { |
231 |
nelem += (nelem>>2) + ntp[1]; |
232 |
sarr = (float *)realloc((void *)sarr, |
233 |
sizeof(float)*nelem); |
234 |
if (sarr == NULL) |
235 |
error(SYSTEM, "out of memory in load_sensor()"); |
236 |
} |
237 |
cp = linebuf; |
238 |
i = ntp[0]*(ntp[1]+1); |
239 |
for ( ; ; ) { |
240 |
sarr[i] = atof(cp); |
241 |
cp = fskip(cp); |
242 |
if (cp == NULL) |
243 |
break; |
244 |
++i; |
245 |
} |
246 |
if (i == ntp[0]*(ntp[1]+1)) |
247 |
break; |
248 |
if (i != (ntp[0]+1)*(ntp[1]+1)) { |
249 |
sprintf(errmsg, |
250 |
"bad column count near line %d in sensor file '%s'", |
251 |
ntp[0]+1, sfile); |
252 |
error(USER, errmsg); |
253 |
} |
254 |
} |
255 |
nelem = i; |
256 |
fclose(fp); |
257 |
errmsg[0] = '\0'; /* sanity checks */ |
258 |
if (ntp[0] <= 0) |
259 |
sprintf(errmsg, "no data in sensor file '%s'", sfile); |
260 |
else if (fabs(sarr[ntp[1]+1]) > FTINY) |
261 |
sprintf(errmsg, "minimum theta must be 0 in sensor file '%s'", |
262 |
sfile); |
263 |
else if (fabs(sarr[1]) > FTINY) |
264 |
sprintf(errmsg, "minimum phi must be 0 in sensor file '%s'", |
265 |
sfile); |
266 |
else if (sarr[ntp[1]] <= FTINY) |
267 |
sprintf(errmsg, |
268 |
"maximum phi must be positive in sensor file '%s'", |
269 |
sfile); |
270 |
else if (sarr[ntp[0]*(ntp[1]+1)] <= FTINY) |
271 |
sprintf(errmsg, |
272 |
"maximum theta must be positive in sensor file '%s'", |
273 |
sfile); |
274 |
if (errmsg[0]) |
275 |
error(USER, errmsg); |
276 |
return((float *)realloc((void *)sarr, sizeof(float)*nelem)); |
277 |
} |
278 |
|
279 |
/* Initialize probability table */ |
280 |
static void |
281 |
init_ptable( |
282 |
char *sfile |
283 |
) |
284 |
{ |
285 |
int samptot = nsamps; |
286 |
float *rowp, *rowp1; |
287 |
double rowsum[MAXNT], rowomega[MAXNT]; |
288 |
double thdiv[MAXNT+1], phdiv[MAXNP+1]; |
289 |
double tsize, psize; |
290 |
double prob, frac, frac1; |
291 |
int i, j, t, p; |
292 |
/* free old table */ |
293 |
if (sensor != NULL) |
294 |
free((void *)sensor); |
295 |
if (pvals != NULL) |
296 |
free((void *)pvals); |
297 |
if (sfile == NULL || !*sfile) { |
298 |
sensor = NULL; |
299 |
sntp[0] = sntp[1] = 0; |
300 |
pvals = NULL; |
301 |
ntheta = nphi = 0; |
302 |
return; |
303 |
} |
304 |
/* load sensor table */ |
305 |
sensor = load_sensor(sntp, sfile); |
306 |
if (sntp[0] > MAXNT) { |
307 |
sprintf(errmsg, "Too many theta rows in sensor file '%s'", |
308 |
sfile); |
309 |
error(INTERNAL, errmsg); |
310 |
} |
311 |
if (sntp[1] > MAXNP) { |
312 |
sprintf(errmsg, "Too many phi columns in sensor file '%s'", |
313 |
sfile); |
314 |
error(INTERNAL, errmsg); |
315 |
} |
316 |
/* compute boundary angles */ |
317 |
maxtheta = 1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2); |
318 |
thdiv[0] = .0; |
319 |
for (t = 1; t < sntp[0]; t++) |
320 |
thdiv[t] = DEGREE/2.*(s_theta(t-1) + s_theta(t)); |
321 |
thdiv[sntp[0]] = maxtheta*DEGREE; |
322 |
phdiv[0] = .0; |
323 |
for (p = 1; p < sntp[1]; p++) |
324 |
phdiv[p] = DEGREE/2.*(s_phi(p-1) + s_phi(p)); |
325 |
phdiv[sntp[1]] = 2.*PI; |
326 |
/* size our table */ |
327 |
tsize = 1. - cos(maxtheta*DEGREE); |
328 |
psize = PI*tsize/(maxtheta*DEGREE); |
329 |
if (sntp[0]*sntp[1] < samptot) /* don't overdo resolution */ |
330 |
samptot = sntp[0]*sntp[1]; |
331 |
ntheta = (int)(sqrt((double)samptot*tsize/psize) + 0.5); |
332 |
if (ntheta > MAXNT) |
333 |
ntheta = MAXNT; |
334 |
nphi = samptot/ntheta; |
335 |
pvals = (float *)malloc(sizeof(float)*ntheta*(nphi+1)); |
336 |
if (pvals == NULL) |
337 |
error(SYSTEM, "out of memory in init_ptable()"); |
338 |
gscale = .0; /* compute our inverse table */ |
339 |
for (i = 0; i < sntp[0]; i++) { |
340 |
rowp = &s_val(i,0); |
341 |
rowsum[i] = 0.; |
342 |
for (j = 0; j < sntp[1]; j++) |
343 |
rowsum[i] += *rowp++; |
344 |
rowomega[i] = cos(thdiv[i]) - cos(thdiv[i+1]); |
345 |
rowomega[i] *= 2.*PI / (double)sntp[1]; |
346 |
gscale += rowsum[i] * rowomega[i]; |
347 |
} |
348 |
for (i = 0; i < ntheta; i++) { |
349 |
prob = (double)i / (double)ntheta; |
350 |
for (t = 0; t < sntp[0]; t++) |
351 |
if ((prob -= rowsum[t]*rowomega[t]/gscale) <= .0) |
352 |
break; |
353 |
if (t >= sntp[0]) |
354 |
error(INTERNAL, "code error 1 in init_ptable()"); |
355 |
frac = 1. + prob/(rowsum[t]*rowomega[t]/gscale); |
356 |
tvals[i] = 1. - ( (1.-frac)*cos(thdiv[t]) + |
357 |
frac*cos(thdiv[t+1]) ); |
358 |
/* offset b/c sensor values are centered */ |
359 |
if (t <= 0 || frac > 0.5) |
360 |
frac -= 0.5; |
361 |
else if (t >= sntp[0]-1 || frac < 0.5) { |
362 |
frac += 0.5; |
363 |
--t; |
364 |
} |
365 |
pvals[i*(nphi+1)] = .0f; |
366 |
for (j = 1; j < nphi; j++) { |
367 |
prob = (double)j / (double)nphi; |
368 |
rowp = &s_val(t,0); |
369 |
rowp1 = &s_val(t+1,0); |
370 |
for (p = 0; p < sntp[1]; p++) { |
371 |
if ((prob -= (1.-frac)*rowp[p]/rowsum[t] + |
372 |
frac*rowp1[p]/rowsum[t+1]) <= .0) |
373 |
break; |
374 |
if (p >= sntp[1]) |
375 |
error(INTERNAL, |
376 |
"code error 2 in init_ptable()"); |
377 |
frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t] |
378 |
+ frac*rowp1[p]/rowsum[t+1]); |
379 |
pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] + |
380 |
frac1*phdiv[p+1]; |
381 |
} |
382 |
} |
383 |
pvals[i*(nphi+1) + nphi] = (float)(2.*PI); |
384 |
} |
385 |
tvals[0] = .0f; |
386 |
tvals[ntheta] = (float)tsize; |
387 |
} |
388 |
|
389 |
/* Get normalized direction from random variables in [0,1) range */ |
390 |
static void |
391 |
get_direc( |
392 |
FVECT dvec, |
393 |
double x, |
394 |
double y |
395 |
) |
396 |
{ |
397 |
double xfrac = x*ntheta; |
398 |
int tndx = (int)xfrac; |
399 |
double yfrac = y*nphi; |
400 |
int pndx = (int)yfrac; |
401 |
double rad, phi; |
402 |
FVECT dv; |
403 |
int i; |
404 |
|
405 |
xfrac -= (double)tndx; |
406 |
yfrac -= (double)pndx; |
407 |
pndx += tndx*(nphi+1); |
408 |
|
409 |
dv[2] = 1. - ((1.-xfrac)*tvals[tndx] + xfrac*tvals[tndx+1]); |
410 |
rad = sqrt(1. - dv[2]*dv[2]); |
411 |
phi = (1.-yfrac)*pvals[pndx] + yfrac*pvals[pndx+1]; |
412 |
dv[0] = -rad*sin(phi); |
413 |
dv[1] = rad*cos(phi); |
414 |
for (i = 3; i--; ) |
415 |
dvec[i] = dv[0]*ourview.hvec[i] + |
416 |
dv[1]*ourview.vvec[i] + |
417 |
dv[2]*ourview.vdir[i] ; |
418 |
} |
419 |
|
420 |
/* Get sensor value in the specified direction (normalized) */ |
421 |
static float |
422 |
sens_val( |
423 |
FVECT dvec |
424 |
) |
425 |
{ |
426 |
FVECT dv; |
427 |
float theta, phi; |
428 |
int t, p; |
429 |
|
430 |
dv[2] = DOT(dvec, ourview.vdir); |
431 |
theta = (float)((1./DEGREE) * acos(dv[2])); |
432 |
if (theta >= maxtheta) |
433 |
return(.0f); |
434 |
dv[0] = DOT(dvec, ourview.hvec); |
435 |
dv[1] = DOT(dvec, ourview.vvec); |
436 |
phi = (float)((1./DEGREE) * atan2(-dv[0], dv[1])); |
437 |
while (phi < .0f) phi += 360.f; |
438 |
t = (int)(theta/maxtheta * sntp[0]); |
439 |
p = (int)(phi*(1./360.) * sntp[1]); |
440 |
/* hack for non-uniform sensor grid */ |
441 |
while (t+1 < sntp[0] && theta >= s_theta(t+1)) |
442 |
++t; |
443 |
while (t-1 >= 0 && theta <= s_theta(t-1)) |
444 |
--t; |
445 |
while (p+1 < sntp[1] && phi >= s_phi(p+1)) |
446 |
++p; |
447 |
while (p-1 >= 0 && phi <= s_phi(p-1)) |
448 |
--p; |
449 |
return(s_val(t,p)); |
450 |
} |
451 |
|
452 |
/* Compute sensor output */ |
453 |
static void |
454 |
comp_sensor( |
455 |
char *sfile |
456 |
) |
457 |
{ |
458 |
int ndirs = dstrsrc > FTINY ? ndsamps : |
459 |
ndsamps > 0 ? 1 : 0; |
460 |
char *err; |
461 |
int nt, np; |
462 |
COLOR vsum; |
463 |
RAY rr; |
464 |
int i, j; |
465 |
/* set view */ |
466 |
ourview.type = VT_ANG; |
467 |
ourview.horiz = ourview.vert = 180.; |
468 |
ourview.hoff = ourview.voff = .0; |
469 |
err = setview(&ourview); |
470 |
if (err != NULL) |
471 |
error(USER, err); |
472 |
/* assign probability table */ |
473 |
init_ptable(sfile); |
474 |
/* do Monte Carlo sampling */ |
475 |
setcolor(vsum, .0f, .0f, .0f); |
476 |
nt = (int)(sqrt((double)nsamps*ntheta/nphi) + .5); |
477 |
np = nsamps/nt; |
478 |
for (i = 0; i < nt; i++) |
479 |
for (j = 0; j < np; j++) { |
480 |
VCOPY(rr.rorg, ourview.vp); |
481 |
get_direc(rr.rdir, (i+frandom())/nt, (j+frandom())/np); |
482 |
if (ourview.vfore > FTINY) |
483 |
VSUM(rr.rorg, rr.rorg, rr.rdir, ourview.vfore); |
484 |
rr.rmax = .0; |
485 |
rayorigin(&rr, PRIMARY, NULL, NULL); |
486 |
if (ray_pqueue(&rr) == 1) |
487 |
addcolor(vsum, rr.rcol); |
488 |
} |
489 |
/* finish MC calculation */ |
490 |
while (ray_presult(&rr, 0) > 0) |
491 |
addcolor(vsum, rr.rcol); |
492 |
scalecolor(vsum, gscale/(nt*np)); |
493 |
/* compute direct component */ |
494 |
for (i = ndirs; i-- > 0; ) { |
495 |
SRCINDEX si; |
496 |
initsrcindex(&si); |
497 |
while (srcray(&rr, NULL, &si)) { |
498 |
double d = sens_val(rr.rdir); |
499 |
if (d <= FTINY) |
500 |
continue; |
501 |
d *= si.dom/ndirs; |
502 |
scalecolor(rr.rcoef, d); |
503 |
if (ray_pqueue(&rr) == 1) { |
504 |
multcolor(rr.rcol, rr.rcoef); |
505 |
addcolor(vsum, rr.rcol); |
506 |
} |
507 |
} |
508 |
} |
509 |
/* finish direct calculation */ |
510 |
while (ray_presult(&rr, 0) > 0) { |
511 |
multcolor(rr.rcol, rr.rcoef); |
512 |
addcolor(vsum, rr.rcol); |
513 |
} |
514 |
/* print our result */ |
515 |
printf("%.4e %.4e %.4e\n", colval(vsum,RED), |
516 |
colval(vsum,GRN), colval(vsum,BLU)); |
517 |
} |