ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rsensor.c
Revision: 2.2
Committed: Thu Feb 21 20:18:25 2008 UTC (16 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +46 -27 lines
Log Message:
First tested version

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rsensor.c,v 2.1 2008/02/21 01:22:06 greg Exp $";
3 #endif
4
5 /*
6 * Compute sensor signal based on spatial sensitivity.
7 *
8 * Created Feb 2008 for Architectural Energy Corp.
9 */
10
11 #include "ray.h"
12 #include "source.h"
13 #include "view.h"
14 #include "random.h"
15
16 #define DEGREE (PI/180.)
17
18 #define MAXNT 180 /* maximum number of theta divisions */
19 #define MAXNP 360 /* maximum number of phi divisions */
20
21 extern char *progname; /* global argv[0] */
22 extern int nowarn; /* don't report warnings? */
23
24 /* current sensor's perspective */
25 VIEW ourview = STDVIEW;
26
27 unsigned long nsamps = 10000; /* desired number of initial samples */
28 unsigned long nssamps = 9000; /* number of super-samples */
29 int ndsamps = 32; /* number of direct samples */
30 int nprocs = 1; /* number of rendering processes */
31
32 float *sensor = NULL; /* current sensor data */
33 int sntp[2]; /* number of sensor theta and phi angles */
34 float maxtheta; /* maximum theta value for this sensor */
35 float tvals[MAXNT+1]; /* theta values (1-D table of 1-cos(t)) */
36 float *pvals = NULL; /* phi values (2-D table in radians) */
37 int ntheta = 0; /* polar angle divisions */
38 int nphi = 0; /* azimuthal angle divisions */
39 double gscale = 1.; /* global scaling value */
40
41 #define s_theta(t) sensor[(t+1)*(sntp[1]+1)]
42 #define s_phi(p) sensor[(p)+1]
43 #define s_val(t,p) sensor[(p)+1+(t+1)*(sntp[1]+1)]
44
45 static void comp_sensor(char *sfile);
46
47 static void
48 print_defaults()
49 {
50 printf("-n %-9d\t\t\t# number of processes\n", nprocs);
51 printf("-rd %-9ld\t\t\t# ray directions\n", nsamps);
52 /* printf("-rs %-9ld\t\t\t# ray super-samples\n", nssamps); */
53 printf("-dn %-9d\t\t\t# direct number of samples\n", ndsamps);
54 printf("-vp %f %f %f\t# view point\n",
55 ourview.vp[0], ourview.vp[1], ourview.vp[2]);
56 printf("-vd %f %f %f\t# view direction\n",
57 ourview.vdir[0], ourview.vdir[1], ourview.vdir[2]);
58 printf("-vu %f %f %f\t# view up\n",
59 ourview.vup[0], ourview.vup[1], ourview.vup[2]);
60 printf("-vo %f\t\t\t# view fore clipping distance\n", ourview.vfore);
61 print_rdefaults();
62 }
63
64 int
65 main(
66 int argc,
67 char *argv[]
68 )
69 {
70 int doheader = 1;
71 int i, rval;
72
73 progname = argv[0];
74 /* set up rendering defaults */
75 rand_samp = 1;
76 dstrsrc = 0.5;
77 srcsizerat = 0.1;
78 directrelay = 3;
79 ambounce = 1;
80 maxdepth = -10;
81 /* just asking defaults? */
82 if (argc == 2 && !strcmp(argv[1], "-defaults")) {
83 print_defaults();
84 return(0);
85 }
86 /* check octree */
87 if (argc < 2 || argv[argc-1][0] == '-')
88 error(USER, "missing octree argument");
89 /* get options from command line */
90 for (i = 1; i < argc-1; i++) {
91 while ((rval = expandarg(&argc, &argv, i)) > 0)
92 ;
93 if (rval < 0) {
94 sprintf(errmsg, "cannot expand '%s'", argv[i]);
95 error(SYSTEM, errmsg);
96 }
97 if (argv[i][0] != '-') { /* process a sensor file */
98 if (!ray_pnprocs) {
99 /* overriding options */
100 directvis = (ndsamps <= 0);
101 do_irrad = 0;
102 if (doheader) { /* print header */
103 printargs(argc, argv, stdout);
104 fputformat("ascii", stdout);
105 putchar('\n');
106 }
107 /* start process(es) */
108 ray_pinit(argv[argc-1], nprocs);
109 }
110 comp_sensor(argv[i]);
111 continue;
112 }
113 if (argv[i][1] == 'r') { /* sampling options */
114 if (argv[i][2] == 'd')
115 nsamps = atol(argv[++i]);
116 else if (argv[i][2] == 's')
117 nssamps = atol(argv[++i]);
118 else {
119 sprintf(errmsg, "bad option at '%s'", argv[i]);
120 error(USER, errmsg);
121 }
122 continue;
123 }
124 /* direct component samples */
125 if (argv[i][1] == 'd' && argv[i][2] == 'n') {
126 ndsamps = atoi(argv[++i]);
127 continue;
128 }
129 if (argv[i][1] == 'v') { /* next sensor view */
130 if (argv[i][2] == 'f') {
131 rval = viewfile(argv[++i], &ourview, NULL);
132 if (rval < 0) {
133 sprintf(errmsg,
134 "cannot open view file \"%s\"",
135 argv[i]);
136 error(SYSTEM, errmsg);
137 } else if (rval == 0) {
138 sprintf(errmsg,
139 "bad view file \"%s\"",
140 argv[i]);
141 error(USER, errmsg);
142 }
143 continue;
144 }
145 rval = getviewopt(&ourview, argc-i, argv+i);
146 if (rval >= 0) {
147 i += rval;
148 continue;
149 }
150 sprintf(errmsg, "bad view option at '%s'", argv[i]);
151 error(USER, errmsg);
152 }
153 if (!strcmp(argv[i], "-w")) { /* turn off warnings */
154 nowarn = 1;
155 continue;
156 }
157 if (ray_pnprocs) {
158 error(WARNING,
159 "rendering options should appear before first sensor");
160 } else if (!strcmp(argv[i], "-defaults")) {
161 print_defaults();
162 return(0);
163 }
164 if (argv[i][1] == 'h') { /* header toggle */
165 doheader = !doheader;
166 continue;
167 }
168 if (!strcmp(argv[i], "-n")) { /* number of processes */
169 nprocs = atoi(argv[++i]);
170 if (nprocs <= 0)
171 error(USER, "illegal number of processes");
172 continue;
173 }
174 rval = getrenderopt(argc-i, argv+i);
175 if (rval < 0) {
176 sprintf(errmsg, "bad render option at '%s'", argv[i]);
177 error(USER, errmsg);
178 }
179 i += rval;
180 }
181 quit(0);
182 }
183
184 /* Load sensor sensitivities (first row and column are angles) */
185 static float *
186 load_sensor(
187 int ntp[2],
188 char *sfile
189 )
190 {
191 char linebuf[8192];
192 int nelem = 1000;
193 float *sarr = (float *)malloc(sizeof(float)*nelem);
194 FILE *fp;
195 char *cp;
196 int i;
197
198 fp = frlibopen(sfile);
199 if (fp == NULL) {
200 sprintf(errmsg, "cannot open sensor file '%s'", sfile);
201 error(SYSTEM, errmsg);
202 }
203 fgets(linebuf, sizeof(linebuf), fp);
204 if (!strncmp(linebuf, "Elevation ", 10))
205 fgets(linebuf, sizeof(linebuf), fp);
206 /* get phi values */
207 sarr[0] = .0f;
208 if (strncmp(linebuf, "degrees", 7)) {
209 sprintf(errmsg, "Missing 'degrees' in sensor file '%s'", sfile);
210 error(USER, errmsg);
211 }
212 cp = sskip(linebuf);
213 ntp[1] = 0;
214 for ( ; ; ) {
215 sarr[ntp[1]+1] = atof(cp);
216 cp = fskip(cp);
217 if (cp == NULL)
218 break;
219 ++ntp[1];
220 }
221 ntp[0] = 0; /* get thetas + data */
222 while (fgets(linebuf, sizeof(linebuf), fp) != NULL) {
223 ++ntp[0];
224 if ((ntp[0]+1)*(ntp[1]+1) > nelem) {
225 nelem += (nelem>>2) + ntp[1];
226 sarr = (float *)realloc((void *)sarr,
227 sizeof(float)*nelem);
228 if (sarr == NULL)
229 error(SYSTEM, "out of memory in load_sensor()");
230 }
231 cp = linebuf;
232 i = ntp[0]*(ntp[1]+1);
233 for ( ; ; ) {
234 sarr[i] = atof(cp);
235 cp = fskip(cp);
236 if (cp == NULL)
237 break;
238 ++i;
239 }
240 if (i == ntp[0]*(ntp[1]+1))
241 break;
242 if (i != (ntp[0]+1)*(ntp[1]+1)) {
243 sprintf(errmsg,
244 "bad column count near line %d in sensor file '%s'",
245 ntp[0]+1, sfile);
246 error(USER, errmsg);
247 }
248 }
249 nelem = i;
250 fclose(fp);
251 errmsg[0] = '\0'; /* sanity checks */
252 if (ntp[0] <= 0)
253 sprintf(errmsg, "no data in sensor file '%s'", sfile);
254 else if (fabs(sarr[ntp[1]+1]) > FTINY)
255 sprintf(errmsg, "minimum theta must be 0 in sensor file '%s'",
256 sfile);
257 else if (fabs(sarr[1]) > FTINY)
258 sprintf(errmsg, "minimum phi must be 0 in sensor file '%s'",
259 sfile);
260 else if (sarr[ntp[1]] <= FTINY)
261 sprintf(errmsg,
262 "maximum phi must be positive in sensor file '%s'",
263 sfile);
264 else if (sarr[ntp[0]*(ntp[1]+1)] <= FTINY)
265 sprintf(errmsg,
266 "maximum theta must be positive in sensor file '%s'",
267 sfile);
268 if (errmsg[0])
269 error(USER, errmsg);
270 return((float *)realloc((void *)sarr, sizeof(float)*nelem));
271 }
272
273 /* Initialize probability table */
274 static void
275 init_ptable(
276 char *sfile
277 )
278 {
279 int samptot = nsamps;
280 float *rowp, *rowp1;
281 double rowsum[MAXNT], rowomega[MAXNT];
282 double thdiv[MAXNT+1], phdiv[MAXNP+1];
283 double tsize, psize;
284 double prob, frac, frac1;
285 int i, j, t, p;
286 /* free old table */
287 if (sensor != NULL)
288 free((void *)sensor);
289 if (pvals != NULL)
290 free((void *)pvals);
291 if (sfile == NULL || !*sfile) {
292 sensor = NULL;
293 sntp[0] = sntp[1] = 0;
294 pvals = NULL;
295 ntheta = nphi = 0;
296 return;
297 }
298 /* load sensor table */
299 sensor = load_sensor(sntp, sfile);
300 if (sntp[0] > MAXNT) {
301 sprintf(errmsg, "Too many theta rows in sensor file '%s'",
302 sfile);
303 error(INTERNAL, errmsg);
304 }
305 if (sntp[1] > MAXNP) {
306 sprintf(errmsg, "Too many phi columns in sensor file '%s'",
307 sfile);
308 error(INTERNAL, errmsg);
309 }
310 /* compute boundary angles */
311 maxtheta = 1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2);
312 thdiv[0] = .0;
313 for (t = 1; t < sntp[0]; t++)
314 thdiv[t] = DEGREE/2.*(s_theta(t-1) + s_theta(t));
315 thdiv[sntp[0]] = maxtheta*DEGREE;
316 phdiv[0] = .0;
317 for (p = 1; p < sntp[1]; p++)
318 phdiv[p] = DEGREE/2.*(s_phi(p-1) + s_phi(p));
319 phdiv[sntp[1]] = 2.*PI;
320 /* size our table */
321 tsize = 1. - cos(maxtheta*DEGREE);
322 psize = PI*tsize/(maxtheta*DEGREE);
323 if (sntp[0]*sntp[1] < samptot) /* don't overdo resolution */
324 samptot = sntp[0]*sntp[1];
325 ntheta = (int)(sqrt((double)samptot*tsize/psize) + 0.5);
326 if (ntheta > MAXNT)
327 ntheta = MAXNT;
328 nphi = samptot/ntheta;
329 pvals = (float *)malloc(sizeof(float)*ntheta*(nphi+1));
330 if (pvals == NULL)
331 error(SYSTEM, "out of memory in init_ptable()");
332 gscale = .0; /* compute our inverse table */
333 for (i = 0; i < sntp[0]; i++) {
334 rowp = &s_val(i,0);
335 rowsum[i] = 0.;
336 for (j = 0; j < sntp[1]; j++)
337 rowsum[i] += *rowp++;
338 rowomega[i] = cos(thdiv[i]) - cos(thdiv[i+1]);
339 rowomega[i] *= 2.*PI / (double)sntp[1];
340 gscale += rowsum[i] * rowomega[i];
341 }
342 for (i = 0; i < ntheta; i++) {
343 prob = (double)i / (double)ntheta;
344 for (t = 0; t < sntp[0]; t++)
345 if ((prob -= rowsum[t]*rowomega[t]/gscale) <= .0)
346 break;
347 if (t >= sntp[0])
348 error(INTERNAL, "code error 1 in init_ptable()");
349 frac = 1. + prob/(rowsum[t]*rowomega[t]/gscale);
350 tvals[i] = 1. - ( (1.-frac)*cos(thdiv[t]) +
351 frac*cos(thdiv[t+1]) );
352 /* offset b/c sensor values are centered */
353 if (t <= 0 || frac > 0.5)
354 frac -= 0.5;
355 else if (t >= sntp[0]-1 || frac < 0.5) {
356 frac += 0.5;
357 --t;
358 }
359 pvals[i*(nphi+1)] = .0f;
360 for (j = 1; j < nphi; j++) {
361 prob = (double)j / (double)nphi;
362 rowp = &s_val(t,0);
363 rowp1 = &s_val(t+1,0);
364 for (p = 0; p < sntp[1]; p++) {
365 if ((prob -= (1.-frac)*rowp[p]/rowsum[t] +
366 frac*rowp1[p]/rowsum[t+1]) <= .0)
367 break;
368 if (p >= sntp[1])
369 error(INTERNAL,
370 "code error 2 in init_ptable()");
371 frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t]
372 + frac*rowp1[p]/rowsum[t+1]);
373 if (p <= 0 || frac1 > 0.5)
374 frac1 -= 0.5;
375 else if (p >= sntp[1]-1 || frac1 < 0.5) {
376 frac1 += 0.5;
377 --p;
378 }
379 pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] +
380 frac1*phdiv[p+1];
381 }
382 }
383 pvals[i*(nphi+1) + nphi] = (float)(2.*PI);
384 }
385 tvals[0] = .0f;
386 tvals[ntheta] = (float)tsize;
387 }
388
389 /* Get normalized direction from random variables in [0,1) range */
390 static void
391 get_direc(
392 FVECT dvec,
393 double x,
394 double y
395 )
396 {
397 double xfrac = x*ntheta;
398 int tndx = (int)xfrac;
399 double yfrac = y*nphi;
400 int pndx = (int)yfrac;
401 double rad, phi;
402 FVECT dv;
403 int i;
404
405 xfrac -= (double)tndx;
406 yfrac -= (double)pndx;
407 pndx += tndx*(nphi+1);
408
409 dv[2] = 1. - ((1.-xfrac)*tvals[tndx] + xfrac*tvals[tndx+1]);
410 rad = sqrt(1. - dv[2]*dv[2]);
411 phi = (1.-yfrac)*pvals[pndx] + yfrac*pvals[pndx+1];
412 dv[0] = -rad*sin(phi);
413 dv[1] = rad*cos(phi);
414 for (i = 3; i--; )
415 dvec[i] = dv[0]*ourview.hvec[i] +
416 dv[1]*ourview.vvec[i] +
417 dv[2]*ourview.vdir[i] ;
418 }
419
420 /* Get sensor value in the specified direction (normalized) */
421 static float
422 sens_val(
423 FVECT dvec
424 )
425 {
426 FVECT dv;
427 float theta, phi;
428 int t, p;
429
430 dv[2] = DOT(dvec, ourview.vdir);
431 theta = (float)((1./DEGREE) * acos(dv[2]));
432 if (theta >= maxtheta)
433 return(.0f);
434 dv[0] = DOT(dvec, ourview.hvec);
435 dv[1] = DOT(dvec, ourview.vvec);
436 phi = (float)((1./DEGREE) * atan2(-dv[0], dv[1]));
437 while (phi < .0f) phi += 360.f;
438 t = (int)(theta/maxtheta * sntp[0]);
439 p = (int)(phi*(1./360.) * sntp[1]);
440 /* hack for non-uniform sensor grid */
441 while (t+1 < sntp[0] && theta >= s_theta(t+1))
442 ++t;
443 while (t-1 >= 0 && theta <= s_theta(t-1))
444 --t;
445 while (p+1 < sntp[1] && phi >= s_phi(p+1))
446 ++p;
447 while (p-1 >= 0 && phi <= s_phi(p-1))
448 --p;
449 return(s_val(t,p));
450 }
451
452 /* Compute sensor output */
453 static void
454 comp_sensor(
455 char *sfile
456 )
457 {
458 int ndirs = dstrsrc > FTINY ? ndsamps :
459 ndsamps > 0 ? 1 : 0;
460 char *err;
461 int nt, np;
462 COLOR vsum;
463 RAY rr;
464 int i, j;
465 /* set view */
466 ourview.type = VT_ANG;
467 ourview.horiz = ourview.vert = 180.;
468 ourview.hoff = ourview.voff = .0;
469 err = setview(&ourview);
470 if (err != NULL)
471 error(USER, err);
472 /* assign probability table */
473 init_ptable(sfile);
474 /* do Monte Carlo sampling */
475 setcolor(vsum, .0f, .0f, .0f);
476 nt = (int)(sqrt((double)nsamps*ntheta/nphi) + .5);
477 np = nsamps/nt;
478 VCOPY(rr.rorg, ourview.vp);
479 rr.rmax = .0;
480 for (i = 0; i < nt; i++)
481 for (j = 0; j < np; j++) {
482 get_direc(rr.rdir, (i+frandom())/nt, (j+frandom())/np);
483 rayorigin(&rr, PRIMARY, NULL, NULL);
484 if (ray_pqueue(&rr) == 1)
485 addcolor(vsum, rr.rcol);
486 }
487 /* finish MC calculation */
488 while (ray_presult(&rr, 0) > 0)
489 addcolor(vsum, rr.rcol);
490 scalecolor(vsum, gscale/(nt*np));
491 /* compute direct component */
492 for (i = ndirs; i-- > 0; ) {
493 SRCINDEX si;
494 initsrcindex(&si);
495 while (srcray(&rr, NULL, &si)) {
496 double d = sens_val(rr.rdir);
497 if (d <= FTINY)
498 continue;
499 d *= si.dom/ndirs;
500 scalecolor(rr.rcoef, d);
501 if (ray_pqueue(&rr) == 1) {
502 multcolor(rr.rcol, rr.rcoef);
503 addcolor(vsum, rr.rcol);
504 }
505 }
506 }
507 /* finish direct calculation */
508 while (ray_presult(&rr, 0) > 0) {
509 multcolor(rr.rcol, rr.rcoef);
510 addcolor(vsum, rr.rcol);
511 }
512 /* print our result */
513 printf("%.4e %.4e %.4e\n", colval(vsum,RED),
514 colval(vsum,GRN), colval(vsum,BLU));
515 }