--- ray/src/util/rsensor.c 2010/09/26 15:41:46 2.8 +++ ray/src/util/rsensor.c 2011/05/17 19:34:36 2.9 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: rsensor.c,v 2.8 2010/09/26 15:41:46 greg Exp $"; +static const char RCSid[] = "$Id: rsensor.c,v 2.9 2011/05/17 19:34:36 greg Exp $"; #endif /* @@ -34,8 +34,8 @@ int nprocs = 1; /* number of rendering processes float *sensor = NULL; /* current sensor data */ int sntp[2]; /* number of sensor theta and phi angles */ float maxtheta; /* maximum theta value for this sensor */ -float tvals[MAXNT+1]; /* theta values (1-D table of 1-cos(t)) */ -float *pvals = NULL; /* phi values (2-D table in radians) */ +float tvals[MAXNT+1]; /* theta prob. values (1-D table of 1-cos(t)) */ +float *pvals = NULL; /* phi prob. values (2-D table in radians) */ int ntheta = 0; /* polar angle divisions */ int nphi = 0; /* azimuthal angle divisions */ double gscale = 1.; /* global scaling value */ @@ -235,6 +235,12 @@ load_sensor( cp = fskip(cp); if (cp == NULL) break; + if (ntp[1] > 1 && sarr[ntp[1]+1] <= sarr[ntp[1]]) { + sprintf(errmsg, + "Phi values not monotinically increasing in sensor file '%s'", + sfile); + error(USER, errmsg); + } ++ntp[1]; } ntp[0] = 0; /* get thetas + data */ @@ -258,6 +264,13 @@ load_sensor( } if (i == ntp[0]*(ntp[1]+1)) break; + if (ntp[0] > 1 && sarr[ntp[0]*(ntp[1]+1)] <= + sarr[(ntp[0]-1)*(ntp[1]+1)]) { + sprintf(errmsg, + "Theta values not monotinically increasing in sensor file '%s'", + sfile); + error(USER, errmsg); + } if (i != (ntp[0]+1)*(ntp[1]+1)) { sprintf(errmsg, "bad column count near line %d in sensor file '%s'", @@ -327,37 +340,43 @@ init_ptable( error(INTERNAL, errmsg); } /* compute boundary angles */ - maxtheta = 1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2); + maxtheta = DEGREE*(1.5f*s_theta(sntp[0]-1) - 0.5f*s_theta(sntp[0]-2)); + if (maxtheta > PI) + maxtheta = PI; thdiv[0] = .0; for (t = 1; t < sntp[0]; t++) thdiv[t] = DEGREE/2.*(s_theta(t-1) + s_theta(t)); - thdiv[sntp[0]] = maxtheta*DEGREE; - phdiv[0] = .0; + thdiv[sntp[0]] = maxtheta; + phdiv[0] = DEGREE*(1.5f*s_phi(0) - 0.5f*s_phi(1)); for (p = 1; p < sntp[1]; p++) phdiv[p] = DEGREE/2.*(s_phi(p-1) + s_phi(p)); - phdiv[sntp[1]] = 2.*PI; + phdiv[sntp[1]] = DEGREE*(1.5f*s_phi(sntp[1]-1) - 0.5f*s_phi(sntp[1]-2)); /* size our table */ - tsize = 1. - cos(maxtheta*DEGREE); - psize = PI*tsize/(maxtheta*DEGREE); + tsize = 1. - cos(maxtheta); + psize = PI*tsize/maxtheta; if (sntp[0]*sntp[1] < samptot) /* don't overdo resolution */ samptot = sntp[0]*sntp[1]; ntheta = (int)(sqrt((double)samptot*tsize/psize) + 0.5); if (ntheta > MAXNT) ntheta = MAXNT; nphi = samptot/ntheta; - pvals = (float *)malloc(sizeof(float)*ntheta*(nphi+1)); + pvals = (float *)malloc(sizeof(float)*(ntheta+1)*(nphi+1)); if (pvals == NULL) error(SYSTEM, "out of memory in init_ptable()"); gscale = .0; /* compute our inverse table */ for (i = 0; i < sntp[0]; i++) { rowp = &s_val(i,0); - rowsum[i] = 0.; + rowsum[i] = 1e-20; for (j = 0; j < sntp[1]; j++) rowsum[i] += *rowp++; rowomega[i] = cos(thdiv[i]) - cos(thdiv[i+1]); rowomega[i] *= 2.*PI / (double)sntp[1]; gscale += rowsum[i] * rowomega[i]; } + if (gscale <= FTINY) { + sprintf(errmsg, "Sensor values sum to zero in file '%s'", sfile); + error(USER, errmsg); + } for (i = 0; i < ntheta; i++) { prob = (double)i / (double)ntheta; for (t = 0; t < sntp[0]; t++) @@ -375,25 +394,25 @@ init_ptable( frac += 0.5; --t; } - pvals[i*(nphi+1)] = .0f; + pvals[i*(nphi+1)] = phdiv[0]; for (j = 1; j < nphi; j++) { prob = (double)j / (double)nphi; rowp = &s_val(t,0); rowp1 = &s_val(t+1,0); - for (p = 0; p < sntp[1]; p++) { + for (p = 0; p < sntp[1]; p++) if ((prob -= (1.-frac)*rowp[p]/rowsum[t] + frac*rowp1[p]/rowsum[t+1]) <= .0) break; - if (p >= sntp[1]) - error(INTERNAL, - "code error 2 in init_ptable()"); - frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t] - + frac*rowp1[p]/rowsum[t+1]); - pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] + - frac1*phdiv[p+1]; + if (p >= sntp[1]) { + p = sntp[1] - 1; + prob = .5; } + frac1 = 1. + prob/((1.-frac)*rowp[p]/rowsum[t] + + frac*rowp1[p]/rowsum[t+1]); + pvals[i*(nphi+1) + j] = (1.-frac1)*phdiv[p] + + frac1*phdiv[p+1]; } - pvals[i*(nphi+1) + nphi] = (float)(2.*PI); + pvals[i*(nphi+1) + nphi] = phdiv[sntp[1]]; } tvals[0] = .0f; tvals[ntheta] = (float)tsize;