#ifndef lint static const char RCSid[] = "$Id: rmtxop.c,v 2.13 2019/08/12 01:20:26 greg Exp $"; #endif /* * General component matrix operations. */ #include #include #include #include "rtio.h" #include "resolu.h" #include "rmatrix.h" #include "platform.h" #define MAXCOMP 16 /* #components we support */ static const char stdin_name[] = ""; /* unary matrix operation(s) */ typedef struct { double sca[MAXCOMP]; /* scalar coefficients */ double cmat[MAXCOMP*MAXCOMP]; /* component transformation */ short nsf; /* number of scalars */ short clen; /* number of coefficients */ short transpose; /* do transpose? */ } RUNARYOP; /* matrix input source and requested operation(s) */ typedef struct { const char *inspec; /* input specification */ RUNARYOP preop; /* unary operation(s) */ RMATRIX *mtx; /* original matrix if loaded */ int binop; /* binary op with next (or 0) */ } ROPMAT; int verbose = 0; /* verbose reporting? */ /* Load matrix */ static int loadmatrix(ROPMAT *rop) { if (rop->mtx != NULL) return(0); rop->mtx = rmx_load(rop->inspec == stdin_name ? (const char *)NULL : rop->inspec); if (rop->mtx == NULL) { fputs(rop->inspec, stderr); fputs(": cannot load matrix\n", stderr); return(-1); } return(1); } /* Get matrix and perform unary operations */ static RMATRIX * loadop(ROPMAT *rop) { RMATRIX *mres; int i; if (loadmatrix(rop) < 0) /* make sure we're loaded */ return(NULL); if (rop->preop.nsf > 0) { /* apply scalar(s) */ if (rop->preop.clen > 0) { fputs("Options -s and -c are exclusive\n", stderr); goto failure; } if (rop->preop.nsf == 1) { for (i = rop->mtx->ncomp; --i; ) rop->preop.sca[i] = rop->preop.sca[0]; } else if (rop->preop.nsf != rop->mtx->ncomp) { fprintf(stderr, "%s: -s must have one or %d factors\n", rop->inspec, rop->mtx->ncomp); goto failure; } if (!rmx_scale(rop->mtx, rop->preop.sca)) { fputs(rop->inspec, stderr); fputs(": scalar operation failed\n", stderr); goto failure; } if (verbose) { fputs(rop->inspec, stderr); fputs(": applied scalar (", stderr); for (i = 0; i < rop->preop.nsf; i++) fprintf(stderr, " %f", rop->preop.sca[i]); fputs(" )\n", stderr); } } if (rop->preop.clen > 0) { /* apply transform */ if (rop->preop.clen % rop->mtx->ncomp) { fprintf(stderr, "%s: -c must have N x %d coefficients\n", rop->inspec, rop->mtx->ncomp); goto failure; } mres = rmx_transform(rop->mtx, rop->preop.clen/rop->mtx->ncomp, rop->preop.cmat); if (mres == NULL) { fprintf(stderr, "%s: matrix transform failed\n", rop->inspec); goto failure; } if (verbose) fprintf(stderr, "%s: applied %d x %d transform\n", rop->inspec, mres->ncomp, rop->mtx->ncomp); rmx_free(rop->mtx); rop->mtx = mres; } if (rop->preop.transpose) { /* transpose matrix? */ mres = rmx_transpose(rop->mtx); if (mres == NULL) { fputs(rop->inspec, stderr); fputs(": transpose failed\n", stderr); goto failure; } if (verbose) { fputs(rop->inspec, stderr); fputs(": transposed rows and columns\n", stderr); } rmx_free(rop->mtx); rop->mtx = mres; } mres = rop->mtx; rop->mtx = NULL; return(mres); failure: rmx_free(rop->mtx); return(rop->mtx = NULL); } /* Execute binary operation, free matrix arguments and return new result */ static RMATRIX * binaryop(const char *inspec, RMATRIX *mleft, int op, RMATRIX *mright) { RMATRIX *mres = NULL; int i; if ((mleft == NULL) | (mright == NULL)) return(NULL); switch (op) { case '.': /* concatenate */ mres = rmx_multiply(mleft, mright); rmx_free(mleft); rmx_free(mright); if (mres == NULL) { fputs(inspec, stderr); if (mleft->ncols != mright->nrows) fputs(": mismatched dimensions for multiply\n", stderr); else fputs(": concatenation failed\n", stderr); return(NULL); } if (verbose) { fputs(inspec, stderr); fputs(": concatenated matrix\n", stderr); } break; case '+': if (!rmx_sum(mleft, mright, NULL)) { fputs(inspec, stderr); fputs(": matrix sum failed\n", stderr); rmx_free(mleft); rmx_free(mright); return(NULL); } if (verbose) { fputs(inspec, stderr); fputs(": added in matrix\n", stderr); } rmx_free(mright); mres = mleft; break; case '*': case '/': { const char * tnam = (op == '/') ? "division" : "multiplication"; errno = 0; if (!rmx_elemult(mleft, mright, (op == '/'))) { fprintf(stderr, "%s: element-wise %s failed\n", inspec, tnam); rmx_free(mleft); rmx_free(mright); return(NULL); } if (errno) fprintf(stderr, "%s: warning - error during element-wise %s\n", inspec, tnam); else if (verbose) fprintf(stderr, "%s: element-wise %s\n", inspec, tnam); rmx_free(mright); mres = mleft; } break; default: fprintf(stderr, "%s: unknown operation '%c'\n", inspec, op); rmx_free(mleft); rmx_free(mright); return(NULL); } return(mres); } /* Perform matrix operations from left to right */ static RMATRIX * op_left2right(ROPMAT *mop) { RMATRIX *mleft = loadop(mop); while (mop->binop) { if (mleft == NULL) break; mleft = binaryop(mop[1].inspec, mleft, mop->binop, loadop(mop+1)); mop++; } return(mleft); } /* Perform matrix operations from right to left */ static RMATRIX * op_right2left(ROPMAT *mop) { RMATRIX *mright; int rpos = 0; /* find end of list */ while (mop[rpos].binop) rpos++; mright = loadop(mop+rpos); while (rpos-- > 0) { if (mright == NULL) break; mright = binaryop(mop[rpos].inspec, loadop(mop+rpos), mop[rpos].binop, mright); } return(mright); } #define t_nrows(mop) ((mop)->preop.transpose ? (mop)->mtx->ncols \ : (mop)->mtx->nrows) #define t_ncols(mop) ((mop)->preop.transpose ? (mop)->mtx->nrows \ : (mop)->mtx->ncols) /* Should we prefer concatenating from rightmost matrix towards left? */ static int prefer_right2left(ROPMAT *mop) { int mri = 0; while (mop[mri].binop) /* find rightmost matrix */ if (mop[mri++].binop != '.') return(0); /* pre-empt reversal for other ops */ if (mri <= 1) return(0); /* won't matter */ if (loadmatrix(mop+mri) < 0) /* load rightmost cat */ return(1); /* fail will bail in a moment */ if (t_ncols(mop+mri) == 1) return(1); /* definitely better R->L */ if (t_ncols(mop+mri) >= t_nrows(mop+mri)) return(0); /* ...probably worse */ if (loadmatrix(mop) < 0) /* load leftmost */ return(0); /* fail will bail in a moment */ return(t_ncols(mop+mri) < t_nrows(mop)); } static int get_factors(double da[], int n, char *av[]) { int ac; for (ac = 0; ac < n && isflt(av[ac]); ac++) da[ac] = atof(av[ac]); return(ac); } static ROPMAT * grow_moparray(ROPMAT *mop, int n2alloc) { int nmats = 0; while (mop[nmats++].binop) ; mop = (ROPMAT *)realloc(mop, n2alloc*sizeof(ROPMAT)); if (mop == NULL) { fputs("Out of memory in grow_moparray()\n", stderr); exit(1); } if (n2alloc > nmats) memset(mop+nmats, 0, (n2alloc-nmats)*sizeof(ROPMAT)); return(mop); } /* Load one or more matrices and operate on them, sending results to stdout */ int main(int argc, char *argv[]) { int outfmt = DTfromHeader; int nall = 2; ROPMAT *mop = (ROPMAT *)calloc(nall, sizeof(ROPMAT)); int nmats = 0; RMATRIX *mres = NULL; int stdin_used = 0; int i; /* get options and arguments */ for (i = 1; i < argc; i++) { if (nmats >= nall) mop = grow_moparray(mop, nall += 2); if (argv[i][0] && !argv[i][1] && strchr(".+*/", argv[i][0]) != NULL) { if (mop[nmats].inspec == NULL || mop[nmats].binop) { fprintf(stderr, "%s: missing matrix argument\n", argv[0]); return(1); } mop[nmats++].binop = argv[i][0]; } else if (argv[i][0] != '-' || !argv[i][1]) { if (argv[i][0] == '-') { if (stdin_used++) { fprintf(stderr, "%s: standard input used for more than one matrix\n", argv[0]); return(1); } mop[nmats].inspec = stdin_name; } else mop[nmats].inspec = argv[i]; if (nmats > 0 && !mop[nmats-1].binop) mop[nmats-1].binop = '.'; nmats++; } else { int n = argc-1 - i; switch (argv[i][1]) { /* get option */ case 'v': verbose = !verbose; break; case 'f': switch (argv[i][2]) { case 'd': outfmt = DTdouble; break; case 'f': outfmt = DTfloat; break; case 'a': outfmt = DTascii; break; case 'c': outfmt = DTrgbe; break; default: goto userr; } break; case 't': mop[nmats].preop.transpose = 1; break; case 's': if (n > MAXCOMP) n = MAXCOMP; i += mop[nmats].preop.nsf = get_factors(mop[nmats].preop.sca, n, argv+i+1); break; case 'c': if (n > MAXCOMP*MAXCOMP) n = MAXCOMP*MAXCOMP; i += mop[nmats].preop.clen = get_factors(mop[nmats].preop.cmat, n, argv+i+1); break; default: fprintf(stderr, "%s: unknown operation '%s'\n", argv[0], argv[i]); goto userr; } } } if (mop[0].inspec == NULL) /* nothing to do? */ goto userr; /* favor quicker concatenation */ mres = prefer_right2left(mop) ? op_right2left(mop) : op_left2right(mop); if (!mres) return(1); /* write result to stdout */ if (outfmt == DTfromHeader) outfmt = mres->dtype; if (outfmt != DTascii) SET_FILE_BINARY(stdout); newheader("RADIANCE", stdout); printargs(argc, argv, stdout); if (!rmx_write(mres, outfmt, stdout)) { fprintf(stderr, "%s: error writing result matrix\n", argv[0]); return(1); } /* rmx_free(mres); free(mop); */ return(0); userr: fprintf(stderr, "Usage: %s [-v][-f[adfc][-t][-s sf .. | -c ce ..] m1 [.+*/] .. > mres\n", argv[0]); return(1); }