ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.88
Committed: Fri Apr 4 02:53:03 2025 UTC (4 weeks, 1 day ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.87: +10 -9 lines
Log Message:
perf(rmtxop): Simplified logic and allow rmx_transfer_data() to work more cases

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.87 2025/04/04 01:48:25 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15 #if !defined(_WIN32) && !defined(_WIN64)
16 #include <sys/mman.h>
17 #endif
18
19 #ifndef MAXCOMP
20 #define MAXCOMP MAXCSAMP /* #components we support */
21 #endif
22
23 static const char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
24
25 /* Initialize a RMATRIX struct but don't allocate array space */
26 RMATRIX *
27 rmx_new(int nr, int nc, int n)
28 {
29 RMATRIX *dnew;
30
31 if (n <= 0)
32 return(NULL);
33
34 dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX));
35 if (!dnew)
36 return(NULL);
37
38 dnew->dtype = DTrmx_native;
39 dnew->nrows = nr;
40 dnew->ncols = nc;
41 dnew->ncomp = n;
42 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
43 memcpy(dnew->wlpart, WLPART, sizeof(dnew->wlpart));
44
45 return(dnew);
46 }
47
48 /* Prepare a RMATRIX for writing (allocate array if needed) */
49 int
50 rmx_prepare(RMATRIX *rm)
51 {
52 if (!rm) return(0);
53 if (rm->mtx) /* assume it's right size */
54 return(1);
55 if ((rm->nrows <= 0) | (rm->ncols <= 0) | (rm->ncomp <= 0))
56 return(0);
57 rm->mtx = (rmx_dtype *)malloc(rmx_array_size(rm));
58 rm->pflags |= RMF_FREEMEM;
59 return(rm->mtx != NULL);
60 }
61
62 /* Call rmx_new() and rmx_prepare() */
63 RMATRIX *
64 rmx_alloc(int nr, int nc, int n)
65 {
66 RMATRIX *dnew = rmx_new(nr, nc, n);
67
68 if (!rmx_prepare(dnew)) {
69 rmx_free(dnew);
70 return(NULL);
71 }
72 return(dnew);
73 }
74
75 /* Clear state by freeing info and matrix data */
76 void
77 rmx_reset(RMATRIX *rm)
78 {
79 if (!rm) return;
80 if (rm->info) {
81 free(rm->info);
82 rm->info = NULL;
83 }
84 #ifdef MAP_FILE
85 if (rm->mapped) {
86 munmap(rm->mapped, rmx_mapped_size(rm));
87 rm->mapped = NULL;
88 } else
89 #endif
90 if (rm->pflags & RMF_FREEMEM) {
91 free(rm->mtx);
92 rm->pflags &= ~RMF_FREEMEM;
93 }
94 rm->mtx = NULL;
95 }
96
97 /* Free an RMATRIX struct and data */
98 void
99 rmx_free(RMATRIX *rm)
100 {
101 if (!rm) return;
102 rmx_reset(rm);
103 free(rm);
104 }
105
106 /* Resolve data type based on two input types (returns 0 for mismatch) */
107 int
108 rmx_newtype(int dtyp1, int dtyp2)
109 {
110 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp1==DTspec) |
111 (dtyp2==DTxyze) | (dtyp2==DTrgbe) | (dtyp2==DTspec)
112 && dtyp1 != dtyp2)
113 return(0);
114 if (dtyp1 < dtyp2)
115 return(dtyp1);
116 return(dtyp2);
117 }
118
119 /* Append header information associated with matrix data */
120 int
121 rmx_addinfo(RMATRIX *rm, const char *info)
122 {
123 size_t oldlen = 0;
124
125 if (!rm || !info || !*info)
126 return(0);
127 if (!rm->info) {
128 rm->info = (char *)malloc(strlen(info)+1);
129 } else {
130 oldlen = strlen(rm->info);
131 rm->info = (char *)realloc(rm->info,
132 oldlen+strlen(info)+1);
133 }
134 if (!rm->info)
135 return(0);
136 strcpy(rm->info+oldlen, info);
137 return(1);
138 }
139
140 static int
141 get_dminfo(char *s, void *p)
142 {
143 RMATRIX *ip = (RMATRIX *)p;
144 char fmt[MAXFMTLEN];
145 int i;
146
147 if (isheadid(s))
148 return(0);
149 if (isncomp(s)) {
150 ip->ncomp = ncompval(s);
151 return(ip->ncomp - 1);
152 }
153 if (!strncmp(s, "NROWS=", 6)) {
154 ip->nrows = atoi(s+6);
155 return(ip->nrows - 1);
156 }
157 if (!strncmp(s, "NCOLS=", 6)) {
158 ip->ncols = atoi(s+6);
159 return(ip->ncols - 1);
160 }
161 if ((i = isbigendian(s)) >= 0) {
162 if (nativebigendian() != i)
163 ip->pflags |= RMF_SWAPIN;
164 else
165 ip->pflags &= ~RMF_SWAPIN;
166 return(0);
167 }
168 if (isexpos(s)) {
169 float f = exposval(s);
170 scalecolor(ip->cexp, f);
171 return(f > .0 ? 0 : -1);
172 }
173 if (iscolcor(s)) {
174 COLOR ctmp;
175 if (!colcorval(ctmp, s)) return(-1);
176 multcolor(ip->cexp, ctmp);
177 return(0);
178 }
179 if (iswlsplit(s))
180 return(wlsplitval(ip->wlpart, s) - 1);
181
182 if (!formatval(fmt, s)) {
183 rmx_addinfo(ip, s);
184 return(0);
185 } /* else check format */
186 for (i = 1; i < DTend; i++)
187 if (!strcmp(fmt, cm_fmt_id[i])) {
188 ip->dtype = i;
189 return(0);
190 }
191 return(-1); /* bad format */
192 }
193
194 static int
195 rmx_load_ascii(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
196 {
197 int j, k;
198
199 for (j = 0; j < rm->ncols; j++)
200 for (k = rm->ncomp; k-- > 0; )
201 if (fscanf(fp, "%lf", drp++) != 1)
202 return(0);
203 return(1);
204 }
205
206 static int
207 rmx_load_float(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
208 {
209 int j, k;
210 float val[MAXCOMP];
211
212 if (rm->ncomp > MAXCOMP) {
213 fputs("Unsupported # components in rmx_load_float()\n", stderr);
214 exit(1);
215 }
216 for (j = 0; j < rm->ncols; j++) {
217 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
218 return(0);
219 if (rm->pflags & RMF_SWAPIN)
220 swap32((char *)val, rm->ncomp);
221 for (k = 0; k < rm->ncomp; k++)
222 *drp++ = val[k];
223 }
224 return(1);
225 }
226
227 static int
228 rmx_load_double(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
229 {
230 if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols)
231 return(0);
232 if (rm->pflags & RMF_SWAPIN)
233 swap64((char *)drp, rm->ncols*rm->ncomp);
234 return(1);
235 }
236
237 static int
238 rmx_load_rgbe(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
239 {
240 COLR *scan;
241 COLOR col;
242 int j;
243
244 if (rm->ncomp != 3)
245 return(0);
246 scan = (COLR *)tempbuffer(sizeof(COLR)*rm->ncols);
247 if (!scan)
248 return(0);
249 if (freadcolrs(scan, rm->ncols, fp) < 0)
250 return(0);
251 for (j = 0; j < rm->ncols; j++) {
252 colr_color(col, scan[j]);
253 *drp++ = colval(col,RED);
254 *drp++ = colval(col,GRN);
255 *drp++ = colval(col,BLU);
256 }
257 return(1);
258 }
259
260 static int
261 rmx_load_spec(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
262 {
263 COLRV *scan;
264 COLORV scol[MAXCOMP];
265 int j, k;
266
267 if ((rm->ncomp < 3) | (rm->ncomp > MAXCOMP))
268 return(0);
269 scan = (COLRV *)tempbuffer((rm->ncomp+1)*rm->ncols);
270 if (!scan)
271 return(0);
272 if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0)
273 return(0);
274 for (j = 0; j < rm->ncols; j++) {
275 scolr2scolor(scol, scan+j*(rm->ncomp+1), rm->ncomp);
276 for (k = 0; k < rm->ncomp; k++)
277 *drp++ = scol[k];
278 }
279 return(1);
280 }
281
282 /* Read matrix header from input stream (cannot be XML) */
283 int
284 rmx_load_header(RMATRIX *rm, FILE *fp)
285 {
286 if (!rm | !fp)
287 return(0);
288 rmx_reset(rm); /* clear state */
289 if (rm->nrows | rm->ncols | !rm->dtype) {
290 rm->nrows = rm->ncols = 0;
291 rm->ncomp = 3;
292 setcolor(rm->cexp, 1.f, 1.f, 1.f);
293 memcpy(rm->wlpart, WLPART, sizeof(rm->wlpart));
294 rm->pflags = 0;
295 }
296 rm->dtype = DTascii; /* assumed w/o FORMAT */
297 if (getheader(fp, get_dminfo, rm) < 0) {
298 fputs("Bad matrix header\n", stderr);
299 return(0);
300 }
301 if ((rm->dtype == DTrgbe) | (rm->dtype == DTxyze) &&
302 rm->ncomp != 3)
303 return(0);
304 if (rm->ncols <= 0 && /* resolution string? */
305 !fscnresolu(&rm->ncols, &rm->nrows, fp))
306 return(0);
307 if (rm->dtype == DTascii) /* set file type (WINDOWS) */
308 SET_FILE_TEXT(fp);
309 else
310 SET_FILE_BINARY(fp);
311 return(1);
312 }
313
314 /* Load next row as rmx_dtype (cannot be XML) */
315 int
316 rmx_load_row(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
317 {
318 switch (rm->dtype) {
319 case DTascii:
320 return(rmx_load_ascii(drp, rm, fp));
321 case DTfloat:
322 return(rmx_load_float(drp, rm, fp));
323 case DTdouble:
324 return(rmx_load_double(drp, rm, fp));
325 case DTrgbe:
326 case DTxyze:
327 return(rmx_load_rgbe(drp, rm, fp));
328 case DTspec:
329 return(rmx_load_spec(drp, rm, fp));
330 default:
331 fputs("Unsupported data type in rmx_load_row()\n", stderr);
332 }
333 return(0);
334 }
335
336 /* Allocate & load post-header data from stream given type set in rm->dtype */
337 int
338 rmx_load_data(RMATRIX *rm, FILE *fp)
339 {
340 int i;
341 #ifdef MAP_FILE
342 long pos; /* map memory for file > 1MB if possible */
343 if ((rm->dtype == DTrmx_native) & !(rm->pflags & RMF_SWAPIN) &
344 (rmx_array_size(rm) >= 1L<<20) &&
345 (pos = ftell(fp)) >= 0 && !(pos % sizeof(rmx_dtype))) {
346 rm->mapped = mmap(NULL, rmx_array_size(rm)+pos, PROT_READ|PROT_WRITE,
347 MAP_PRIVATE, fileno(fp), 0);
348 if (rm->mapped != MAP_FAILED) {
349 if (rm->pflags & RMF_FREEMEM)
350 free(rm->mtx);
351 rm->mtx = (rmx_dtype *)rm->mapped + pos/sizeof(rmx_dtype);
352 rm->pflags &= ~RMF_FREEMEM;
353 return(1);
354 } /* else fall back on reading into memory */
355 rm->mapped = NULL;
356 }
357 #endif
358 if (!rmx_prepare(rm)) { /* need in-core matrix array */
359 fprintf(stderr, "Cannot allocate %g MByte matrix array\n",
360 (1./(1L<<20))*(double)rmx_array_size(rm));
361 return(0);
362 }
363 for (i = 0; i < rm->nrows; i++)
364 if (!rmx_load_row(rmx_lval(rm,i,0), rm, fp))
365 return(0);
366 return(1);
367 }
368
369 /* Load matrix from supported file type */
370 RMATRIX *
371 rmx_load(const char *inspec, RMPref rmp)
372 {
373 FILE *fp;
374 RMATRIX *dnew;
375 int ok;
376
377 if (!inspec)
378 inspec = stdin_name;
379 else if (!*inspec)
380 return(NULL);
381 if (inspec == stdin_name) /* reading from stdin? */
382 fp = stdin;
383 else if (inspec[0] == '!')
384 fp = popen(inspec+1, "r");
385 else { /* check suffix */
386 const char *sp = strrchr(inspec, '.');
387 if (sp > inspec && !strcasecmp(sp+1, "XML")) { /* BSDF? */
388 CMATRIX *cm = rmp==RMPnone ? (CMATRIX *)NULL :
389 rmp==RMPtrans ? cm_loadBTDF(inspec) :
390 cm_loadBRDF(inspec, rmp==RMPreflB) ;
391 if (!cm)
392 return(NULL);
393 dnew = rmx_from_cmatrix(cm);
394 cm_free(cm);
395 dnew->dtype = DTascii;
396 return(dnew); /* return here */
397 } /* else open it ourselves */
398 fp = fopen(inspec, "r");
399 }
400 if (!fp) {
401 fprintf(stderr, "Cannot open for reading: %s\n", inspec);
402 return(NULL);
403 }
404 #ifdef getc_unlocked
405 flockfile(fp);
406 #endif
407 SET_FILE_BINARY(fp); /* load header info */
408 if (!rmx_load_header(dnew = rmx_new(0,0,3), fp)) {
409 fprintf(stderr, "Bad header in: %s\n", inspec);
410 if (inspec[0] == '!') pclose(fp);
411 else fclose(fp);
412 rmx_free(dnew);
413 return(NULL);
414 }
415 ok = rmx_load_data(dnew, fp); /* allocate & load data */
416
417 if (fp != stdin) { /* close input stream */
418 if (inspec[0] == '!')
419 pclose(fp);
420 else
421 fclose(fp);
422 }
423 #ifdef getc_unlocked
424 else
425 funlockfile(fp);
426 #endif
427 if (!ok) { /* load failure? */
428 fprintf(stderr, "Error loading data from: %s\n", inspec);
429 rmx_free(dnew);
430 return(NULL);
431 }
432 /* undo exposure? */
433 if ((dnew->cexp[0] != 1.f) |
434 (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) {
435 double cmlt[MAXCOMP];
436 int i;
437 if (dnew->ncomp > MAXCOMP) {
438 fprintf(stderr, "Excess spectral components in: %s\n",
439 inspec);
440 rmx_free(dnew);
441 return(NULL);
442 }
443 cmlt[0] = 1./dnew->cexp[0];
444 cmlt[1] = 1./dnew->cexp[1];
445 cmlt[2] = 1./dnew->cexp[2];
446 for (i = dnew->ncomp; i-- > 3; )
447 cmlt[i] = cmlt[1]; /* XXX hack! */
448 rmx_scale(dnew, cmlt);
449 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
450 }
451 return(dnew);
452 }
453
454 static int
455 rmx_write_ascii(const rmx_dtype *dp, int nc, int len, FILE *fp)
456 {
457 while (len-- > 0) {
458 int k = nc;
459 while (k-- > 0)
460 fprintf(fp, " %.7e", *dp++);
461 fputc('\t', fp);
462 }
463 return(fputc('\n', fp) != EOF);
464 }
465
466 static int
467 rmx_write_float(const rmx_dtype *dp, int len, FILE *fp)
468 {
469 float val;
470
471 while (len--) {
472 val = *dp++;
473 if (putbinary(&val, sizeof(float), 1, fp) != 1)
474 return(0);
475 }
476 return(1);
477 }
478
479 static int
480 rmx_write_rgbe(const rmx_dtype *dp, int nc, int len, FILE *fp)
481 {
482 COLR *scan;
483 int j;
484
485 if ((nc != 1) & (nc != 3)) return(0);
486 scan = (COLR *)tempbuffer(sizeof(COLR)*len);
487 if (!scan) return(0);
488
489 for (j = 0; j < len; j++, dp += nc)
490 if (nc == 1)
491 setcolr(scan[j], dp[0], dp[0], dp[0]);
492 else
493 setcolr(scan[j], dp[0], dp[1], dp[2]);
494
495 return(fwritecolrs(scan, len, fp) >= 0);
496 }
497
498 static int
499 rmx_write_spec(const rmx_dtype *dp, int nc, int len, FILE *fp)
500 {
501 COLRV *scan;
502 COLORV scol[MAXCOMP];
503 int j, k;
504
505 if ((nc < 3) | (nc > MAXCOMP)) return(0);
506 scan = (COLRV *)tempbuffer((nc+1)*len);
507 if (!scan) return(0);
508 for (j = 0; j < len; j++, dp += nc) {
509 for (k = nc; k--; )
510 scol[k] = dp[k];
511 scolor2scolr(scan+j*(nc+1), scol, nc);
512 }
513 return(fwritescolrs(scan, nc, len, fp) >= 0);
514 }
515
516 /* Check if CIE XYZ primaries were specified */
517 static int
518 findCIEprims(const char *info)
519 {
520 RGBPRIMS prims;
521
522 if (!info)
523 return(0);
524 info = strstr(info, PRIMARYSTR);
525 if (!info || !primsval(prims, info))
526 return(0);
527
528 return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) &&
529 (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) &&
530 (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01));
531 }
532
533 /* Finish writing header data with resolution and format, returning type used */
534 int
535 rmx_write_header(const RMATRIX *rm, int dtype, FILE *fp)
536 {
537 if (!rm | !fp || rm->ncols <= 0)
538 return(0);
539 if (rm->info)
540 fputs(rm->info, fp);
541 if (dtype == DTfromHeader)
542 dtype = rm->dtype;
543 else if (dtype == DTrgbe && (rm->dtype == DTxyze ||
544 findCIEprims(rm->info)))
545 dtype = DTxyze;
546 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
547 dtype = DTrgbe;
548 if ((dtype < DTspec) & (rm->ncomp > 3))
549 dtype = DTspec;
550 else if ((dtype == DTspec) & (rm->ncomp <= 3))
551 return(0);
552
553 if (dtype == DTascii) /* set file type (WINDOWS) */
554 SET_FILE_TEXT(fp);
555 else
556 SET_FILE_BINARY(fp);
557 /* write exposure? */
558 if (rm->ncomp == 3 && (rm->cexp[RED] != rm->cexp[GRN]) |
559 (rm->cexp[GRN] != rm->cexp[BLU]))
560 fputcolcor(rm->cexp, fp);
561 else if (rm->cexp[GRN] != 1.f)
562 fputexpos(rm->cexp[GRN], fp);
563 /* matrix size? */
564 if ((dtype > DTspec) | (rm->nrows <= 0)) {
565 if (rm->nrows > 0)
566 fprintf(fp, "NROWS=%d\n", rm->nrows);
567 fprintf(fp, "NCOLS=%d\n", rm->ncols);
568 }
569 if (dtype >= DTspec) { /* # components & split? */
570 fputncomp(rm->ncomp, fp);
571 if (rm->ncomp > 3 &&
572 memcmp(rm->wlpart, WLPART, sizeof(WLPART)))
573 fputwlsplit(rm->wlpart, fp);
574 } else if ((rm->ncomp != 3) & (rm->ncomp != 1))
575 return(0); /* wrong # components */
576 if ((dtype == DTfloat) | (dtype == DTdouble))
577 fputendian(fp); /* important to record */
578 fputformat(cm_fmt_id[dtype], fp);
579 fputc('\n', fp); /* end of header */
580 if ((dtype <= DTspec) & (rm->nrows > 0))
581 fprtresolu(rm->ncols, rm->nrows, fp);
582 return(dtype);
583 }
584
585 /* Write out matrix data (usually by row) */
586 int
587 rmx_write_data(const rmx_dtype *dp, int nc, int len, int dtype, FILE *fp)
588 {
589 switch (dtype) {
590 case DTascii:
591 return(rmx_write_ascii(dp, nc, len, fp));
592 case DTfloat:
593 return(rmx_write_float(dp, nc*len, fp));
594 case DTrmx_native:
595 return(putbinary(dp, sizeof(*dp)*nc, len, fp) == len);
596 case DTrgbe:
597 case DTxyze:
598 return(rmx_write_rgbe(dp, nc, len, fp));
599 case DTspec:
600 return(rmx_write_spec(dp, nc, len, fp));
601 }
602 return(0);
603 }
604
605 /* Write matrix using file format indicated by dtype */
606 int
607 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
608 {
609 int ok = 0;
610 int i;
611 /* complete header */
612 dtype = rmx_write_header(rm, dtype, fp);
613 if (dtype <= 0)
614 return(0);
615 #ifdef getc_unlocked
616 flockfile(fp);
617 #endif
618 if (dtype == DTrmx_native) /* write all at once? */
619 ok = rmx_write_data(rm->mtx, rm->ncomp,
620 rm->nrows*rm->ncols, dtype, fp);
621 else /* else row by row */
622 for (i = 0; i < rm->nrows; i++) {
623 ok = rmx_write_data(rmx_val(rm,i,0), rm->ncomp,
624 rm->ncols, dtype, fp);
625 if (!ok) break;
626 }
627
628 if (ok) ok = (fflush(fp) == 0);
629 #ifdef getc_unlocked
630 funlockfile(fp);
631 #endif
632 if (!ok) fputs("Error writing matrix\n", stderr);
633 return(ok);
634 }
635
636 /* Allocate and assign square identity matrix with n components */
637 RMATRIX *
638 rmx_identity(const int dim, const int n)
639 {
640 RMATRIX *rid = rmx_alloc(dim, dim, n);
641 int i, k;
642
643 if (!rid)
644 return(NULL);
645 memset(rid->mtx, 0, rmx_array_size(rid));
646 for (i = dim; i--; ) {
647 rmx_dtype *dp = rmx_lval(rid,i,i);
648 for (k = n; k--; )
649 dp[k] = 1.;
650 }
651 return(rid);
652 }
653
654 /* Duplicate the given matrix (may be unallocated) */
655 RMATRIX *
656 rmx_copy(const RMATRIX *rm)
657 {
658 RMATRIX *dnew;
659
660 if (!rm)
661 return(NULL);
662 dnew = rmx_new(rm->nrows, rm->ncols, rm->ncomp);
663 if (!dnew)
664 return(NULL);
665 if (rm->mtx) {
666 if (!rmx_prepare(dnew)) {
667 rmx_free(dnew);
668 return(NULL);
669 }
670 memcpy(dnew->mtx, rm->mtx, rmx_array_size(dnew));
671 }
672 rmx_addinfo(dnew, rm->info);
673 dnew->dtype = rm->dtype;
674 copycolor(dnew->cexp, rm->cexp);
675 memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart));
676 return(dnew);
677 }
678
679 /* Replace data in first matrix with data from second */
680 int
681 rmx_transfer_data(RMATRIX *rdst, RMATRIX *rsrc, int dometa)
682 {
683 if (!rdst | !rsrc)
684 return(0);
685 if (dometa) { /* transfer everything? */
686 rmx_reset(rdst);
687 *rdst = *rsrc;
688 rsrc->info = NULL; rsrc->mapped = NULL; rsrc->mtx = NULL;
689 return(1);
690 }
691 /* just matrix data -- leave metadata */
692 if ((rdst->nrows != rsrc->nrows) |
693 (rdst->ncols != rsrc->ncols) |
694 (rdst->ncomp != rsrc->ncomp))
695 return(0);
696 #ifdef MAP_FILE
697 if (rdst->mapped)
698 munmap(rdst->mapped, rmx_mapped_size(rdst));
699 else
700 #endif
701 if (rdst->pflags & RMF_FREEMEM) {
702 free(rdst->mtx);
703 rdst->pflags &= ~RMF_FREEMEM;
704 }
705 rdst->mapped = rsrc->mapped;
706 rdst->mtx = rsrc->mtx;
707 rdst->pflags |= rsrc->pflags & RMF_FREEMEM;
708 rsrc->mapped = NULL; rsrc->mtx = NULL;
709 return(1);
710 }
711
712 /* Transpose the given matrix */
713 int
714 rmx_transpose(RMATRIX *rm)
715 {
716 RMATRIX dnew;
717 int i, j;
718
719 if (!rm || !rm->mtx | (rm->ncomp > MAXCOMP))
720 return(0);
721 if (rm->info)
722 rmx_addinfo(rm, "Transposed rows and columns\n");
723 if ((rm->nrows == 1) | (rm->ncols == 1)) { /* vector? */
724 j = rm->ncols;
725 rm->ncols = rm->nrows;
726 rm->nrows = j;
727 return(1);
728 }
729 if (rm->nrows == rm->ncols) { /* square matrix case */
730 rmx_dtype val[MAXCOMP];
731 for (j = rm->ncols; j--; )
732 for (i = rm->nrows; i--; ) {
733 if (i == j) continue;
734 memcpy(val, rmx_val(rm,i,j),
735 sizeof(rmx_dtype)*rm->ncomp);
736 memcpy(rmx_lval(rm,i,j), rmx_val(rm,j,i),
737 sizeof(rmx_dtype)*rm->ncomp);
738 memcpy(rmx_val(rm,j,i), val,
739 sizeof(rmx_dtype)*rm->ncomp);
740 }
741 return(1);
742 }
743 memset(&dnew, 0, sizeof(dnew));
744 dnew.ncols = rm->nrows; dnew.nrows = rm->ncols;
745 dnew.ncomp = rm->ncomp;
746 if (!rmx_prepare(&dnew))
747 return(0);
748 rmx_addinfo(&dnew, rm->info);
749 dnew.dtype = rm->dtype;
750 copycolor(dnew.cexp, rm->cexp);
751 memcpy(dnew.wlpart, rm->wlpart, sizeof(dnew.wlpart));
752 for (j = dnew.ncols; j--; )
753 for (i = dnew.nrows; i--; )
754 memcpy(rmx_lval(&dnew,i,j), rmx_val(rm,j,i),
755 sizeof(rmx_dtype)*dnew.ncomp);
756 /* and reassign result */
757 return(rmx_transfer_data(rm, &dnew, 1));
758 }
759
760 /* Multiply (concatenate) two matrices and allocate the result */
761 RMATRIX *
762 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
763 {
764 RMATRIX *mres;
765 int i, j, k, h;
766
767 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
768 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
769 return(NULL);
770 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
771 if (!mres)
772 return(NULL);
773 i = rmx_newtype(m1->dtype, m2->dtype);
774 if (i)
775 mres->dtype = i;
776 else
777 rmx_addinfo(mres, rmx_mismatch_warn);
778 for (i = mres->nrows; i--; )
779 for (j = mres->ncols; j--; )
780 for (k = mres->ncomp; k--; ) {
781 rmx_dtype d = 0;
782 for (h = m1->ncols; h--; )
783 d += rmx_val(m1,i,h)[k] * rmx_val(m2,h,j)[k];
784 rmx_lval(mres,i,j)[k] = d;
785 }
786 return(mres);
787 }
788
789 /* Element-wise multiplication (or division) of m2 into m1 */
790 int
791 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
792 {
793 int zeroDivides = 0;
794 int i, j, k;
795
796 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
797 (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
798 return(0);
799 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
800 return(0);
801 i = rmx_newtype(m1->dtype, m2->dtype);
802 if (i)
803 m1->dtype = i;
804 else
805 rmx_addinfo(m1, rmx_mismatch_warn);
806 for (i = m1->nrows; i--; )
807 for (j = m1->ncols; j--; )
808 if (divide) {
809 rmx_dtype d;
810 if (m2->ncomp == 1) {
811 d = rmx_val(m2,i,j)[0];
812 if (d == 0) {
813 ++zeroDivides;
814 for (k = m1->ncomp; k--; )
815 rmx_lval(m1,i,j)[k] = 0;
816 } else {
817 d = 1./d;
818 for (k = m1->ncomp; k--; )
819 rmx_lval(m1,i,j)[k] *= d;
820 }
821 } else
822 for (k = m1->ncomp; k--; ) {
823 d = rmx_val(m2,i,j)[k];
824 if (d == 0) {
825 ++zeroDivides;
826 rmx_lval(m1,i,j)[k] = 0;
827 } else
828 rmx_lval(m1,i,j)[k] /= d;
829 }
830 } else {
831 if (m2->ncomp == 1) {
832 const rmx_dtype d = rmx_val(m2,i,j)[0];
833 for (k = m1->ncomp; k--; )
834 rmx_lval(m1,i,j)[k] *= d;
835 } else
836 for (k = m1->ncomp; k--; )
837 rmx_lval(m1,i,j)[k] *= rmx_val(m2,i,j)[k];
838 }
839 if (zeroDivides) {
840 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
841 errno = ERANGE;
842 }
843 return(1);
844 }
845
846 /* Sum second matrix into first, applying scale factor beforehand */
847 int
848 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
849 {
850 double *mysf = NULL;
851 int i, j, k;
852
853 if (!msum | !madd || !msum->mtx | !madd->mtx |
854 (msum->nrows != madd->nrows) |
855 (msum->ncols != madd->ncols) |
856 (msum->ncomp != madd->ncomp))
857 return(0);
858 if (!sf) {
859 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
860 if (!mysf)
861 return(0);
862 for (k = msum->ncomp; k--; )
863 mysf[k] = 1;
864 sf = mysf;
865 }
866 i = rmx_newtype(msum->dtype, madd->dtype);
867 if (i)
868 msum->dtype = i;
869 else
870 rmx_addinfo(msum, rmx_mismatch_warn);
871 for (i = msum->nrows; i--; )
872 for (j = msum->ncols; j--; ) {
873 const rmx_dtype *da = rmx_val(madd,i,j);
874 rmx_dtype *ds = rmx_lval(msum,i,j);
875 for (k = msum->ncomp; k--; )
876 ds[k] += sf[k] * da[k];
877 }
878 if (mysf)
879 free(mysf);
880 return(1);
881 }
882
883 /* Scale the given matrix by the indicated scalar component vector */
884 int
885 rmx_scale(RMATRIX *rm, const double sf[])
886 {
887 int i, j, k;
888
889 if (!rm | !sf || !rm->mtx)
890 return(0);
891 for (i = rm->nrows; i--; )
892 for (j = rm->ncols; j--; ) {
893 rmx_dtype *dp = rmx_lval(rm,i,j);
894 for (k = rm->ncomp; k--; )
895 dp[k] *= sf[k];
896 }
897 if (rm->info)
898 rmx_addinfo(rm, "Applied scalar\n");
899 /* XXX: should record as exposure for COLR and SCOLR types? */
900 return(1);
901 }
902
903 /* Allocate new matrix and apply component transformation */
904 RMATRIX *
905 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
906 {
907 int i, j, ks, kd;
908 RMATRIX *dnew;
909
910 if (!msrc | (n <= 0) | !cmat || !msrc->mtx)
911 return(NULL);
912 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
913 if (!dnew)
914 return(NULL);
915 if (msrc->info) {
916 char buf[128];
917 sprintf(buf, "Applied %dx%d component transform\n",
918 dnew->ncomp, msrc->ncomp);
919 rmx_addinfo(dnew, msrc->info);
920 rmx_addinfo(dnew, buf);
921 }
922 dnew->dtype = msrc->dtype;
923 for (i = dnew->nrows; i--; )
924 for (j = dnew->ncols; j--; ) {
925 const rmx_dtype *ds = rmx_val(msrc,i,j);
926 for (kd = dnew->ncomp; kd--; ) {
927 rmx_dtype d = 0;
928 for (ks = msrc->ncomp; ks--; )
929 d += cmat[kd*msrc->ncomp + ks] * ds[ks];
930 rmx_lval(dnew,i,j)[kd] = d;
931 }
932 }
933 return(dnew);
934 }
935
936 /* Convert a color matrix to newly allocated RMATRIX buffer */
937 RMATRIX *
938 rmx_from_cmatrix(const CMATRIX *cm)
939 {
940 int i, j;
941 RMATRIX *dnew;
942
943 if (!cm)
944 return(NULL);
945 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
946 if (!dnew)
947 return(NULL);
948 dnew->dtype = DTfloat;
949 for (i = dnew->nrows; i--; )
950 for (j = dnew->ncols; j--; ) {
951 const COLORV *cv = cm_lval(cm,i,j);
952 rmx_dtype *dp = rmx_lval(dnew,i,j);
953 dp[0] = cv[0];
954 dp[1] = cv[1];
955 dp[2] = cv[2];
956 }
957 return(dnew);
958 }
959
960 /* Convert general matrix to newly allocated CMATRIX buffer */
961 CMATRIX *
962 cm_from_rmatrix(const RMATRIX *rm)
963 {
964 int i, j;
965 CMATRIX *cnew;
966
967 if (!rm || !rm->mtx | (rm->ncomp == 2) | (rm->ncomp > MAXCOMP))
968 return(NULL);
969 cnew = cm_alloc(rm->nrows, rm->ncols);
970 if (!cnew)
971 return(NULL);
972 for (i = cnew->nrows; i--; )
973 for (j = cnew->ncols; j--; ) {
974 const rmx_dtype *dp = rmx_val(rm,i,j);
975 COLORV *cv = cm_lval(cnew,i,j);
976 switch (rm->ncomp) {
977 case 3:
978 setcolor(cv, dp[0], dp[1], dp[2]);
979 break;
980 case 1:
981 setcolor(cv, dp[0], dp[0], dp[0]);
982 break;
983 default: {
984 COLORV scol[MAXCOMP];
985 int k;
986 for (k = rm->ncomp; k--; )
987 scol[k] = dp[k];
988 scolor2color(cv, scol, rm->ncomp, rm->wlpart);
989 } break;
990 }
991 }
992 return(cnew);
993 }