ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.67
Committed: Fri Dec 1 02:05:00 2023 UTC (4 months, 3 weeks ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.66: +120 -127 lines
Log Message:
refactor(rmtxop): Changed rmatrix library interface for by row matrix output

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.66 2023/11/28 21:28:11 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15 #if !defined(_WIN32) && !defined(_WIN64)
16 #include <sys/mman.h>
17 #endif
18
19 static const char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 #define array_size(rm) (sizeof(double)*(rm)->nrows*(rm)->ncols*(rm)->ncomp)
22 #define mapped_size(rm) ((char *)(rm)->mtx + array_size(rm) - (char *)(rm)->mapped)
23
24 /* Initialize a RMATRIX struct but don't allocate array space */
25 RMATRIX *
26 rmx_new(int nr, int nc, int n)
27 {
28 RMATRIX *dnew;
29
30 if (n <= 0)
31 return(NULL);
32
33 dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX));
34 if (dnew) {
35 dnew->dtype = DTdouble;
36 dnew->nrows = nr;
37 dnew->ncols = nc;
38 dnew->ncomp = n;
39 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
40 memcpy(dnew->wlpart, WLPART, sizeof(dnew->wlpart));
41 }
42 return(dnew);
43 }
44
45 /* Prepare a RMATRIX for writing (allocate array if needed) */
46 int
47 rmx_prepare(RMATRIX *rm)
48 {
49 if (!rm) return(0);
50 if (rm->mtx)
51 return(1);
52 if ((rm->nrows <= 0) | (rm->ncols <= 0) | (rm->ncomp <= 0))
53 return(0);
54 rm->mtx = (double *)malloc(array_size(rm));
55 return(rm->mtx != NULL);
56 }
57
58 /* Call rmx_new() and rmx_prepare() */
59 RMATRIX *
60 rmx_alloc(int nr, int nc, int n)
61 {
62 RMATRIX *dnew = rmx_new(nr, nc, n);
63
64 if (dnew && !rmx_prepare(dnew)) {
65 rmx_free(dnew);
66 dnew = NULL;
67 }
68 return(dnew);
69 }
70
71 /* Clear state by freeing info and matrix data */
72 void
73 rmx_reset(RMATRIX *rm)
74 {
75 if (!rm) return;
76 if (rm->info) {
77 free(rm->info);
78 rm->info = NULL;
79 }
80 if (rm->mtx) {
81 #ifdef MAP_FILE
82 if (rm->mapped) {
83 munmap(rm->mapped, mapped_size(rm));
84 rm->mapped = NULL;
85 } else
86 #endif
87 free(rm->mtx);
88 rm->mtx = NULL;
89 }
90 }
91
92 /* Free an RMATRIX struct and data */
93 void
94 rmx_free(RMATRIX *rm)
95 {
96 if (!rm) return;
97 rmx_reset(rm);
98 free(rm);
99 }
100
101 /* Resolve data type based on two input types (returns 0 for mismatch) */
102 int
103 rmx_newtype(int dtyp1, int dtyp2)
104 {
105 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp1==DTspec) |
106 (dtyp2==DTxyze) | (dtyp2==DTrgbe) | (dtyp2==DTspec)
107 && dtyp1 != dtyp2)
108 return(0);
109 if (dtyp1 < dtyp2)
110 return(dtyp1);
111 return(dtyp2);
112 }
113
114 /* Append header information associated with matrix data */
115 int
116 rmx_addinfo(RMATRIX *rm, const char *info)
117 {
118 int oldlen = 0;
119
120 if (!rm || !info || !*info)
121 return(0);
122 if (!rm->info) {
123 rm->info = (char *)malloc(strlen(info)+1);
124 if (rm->info) rm->info[0] = '\0';
125 } else {
126 oldlen = strlen(rm->info);
127 rm->info = (char *)realloc(rm->info,
128 oldlen+strlen(info)+1);
129 }
130 if (!rm->info)
131 return(0);
132 strcpy(rm->info+oldlen, info);
133 return(1);
134 }
135
136 static int
137 get_dminfo(char *s, void *p)
138 {
139 RMATRIX *ip = (RMATRIX *)p;
140 char fmt[MAXFMTLEN];
141 int i;
142
143 if (headidval(NULL, s))
144 return(0);
145 if (isncomp(s)) {
146 ip->ncomp = ncompval(s);
147 return(0);
148 }
149 if (!strncmp(s, "NROWS=", 6)) {
150 ip->nrows = atoi(s+6);
151 return(0);
152 }
153 if (!strncmp(s, "NCOLS=", 6)) {
154 ip->ncols = atoi(s+6);
155 return(0);
156 }
157 if ((i = isbigendian(s)) >= 0) {
158 ip->swapin = (nativebigendian() != i);
159 return(0);
160 }
161 if (isexpos(s)) {
162 float f = exposval(s);
163 scalecolor(ip->cexp, f);
164 return(0);
165 }
166 if (iscolcor(s)) {
167 COLOR ctmp;
168 colcorval(ctmp, s);
169 multcolor(ip->cexp, ctmp);
170 return(0);
171 }
172 if (iswlsplit(s)) {
173 wlsplitval(ip->wlpart, s);
174 return(0);
175 }
176 if (!formatval(fmt, s)) {
177 rmx_addinfo(ip, s);
178 return(0);
179 } /* else check format */
180 for (i = 1; i < DTend; i++)
181 if (!strcmp(fmt, cm_fmt_id[i])) {
182 ip->dtype = i;
183 return(0);
184 }
185 return(-1);
186 }
187
188 static int
189 rmx_load_ascii(double *drp, const RMATRIX *rm, FILE *fp)
190 {
191 int j, k;
192
193 for (j = 0; j < rm->ncols; j++)
194 for (k = rm->ncomp; k-- > 0; )
195 if (fscanf(fp, "%lf", drp++) != 1)
196 return(0);
197 return(1);
198 }
199
200 static int
201 rmx_load_float(double *drp, const RMATRIX *rm, FILE *fp)
202 {
203 int j, k;
204 float val[100];
205
206 if (rm->ncomp > 100) {
207 fputs("Unsupported # components in rmx_load_float()\n", stderr);
208 exit(1);
209 }
210 for (j = 0; j < rm->ncols; j++) {
211 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
212 return(0);
213 if (rm->swapin)
214 swap32((char *)val, rm->ncomp);
215 for (k = 0; k < rm->ncomp; k++)
216 *drp++ = val[k];
217 }
218 return(1);
219 }
220
221 static int
222 rmx_load_double(double *drp, const RMATRIX *rm, FILE *fp)
223 {
224 if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols)
225 return(0);
226 if (rm->swapin)
227 swap64((char *)drp, rm->ncols*rm->ncomp);
228 return(1);
229 }
230
231 static int
232 rmx_load_rgbe(double *drp, const RMATRIX *rm, FILE *fp)
233 {
234 COLR *scan;
235 COLOR col;
236 int j;
237
238 if (rm->ncomp != 3)
239 return(0);
240 scan = (COLR *)tempbuffer(sizeof(COLR)*rm->ncols);
241 if (!scan)
242 return(0);
243 if (freadcolrs(scan, rm->ncols, fp) < 0)
244 return(0);
245 for (j = 0; j < rm->ncols; j++) {
246 colr_color(col, scan[j]);
247 *drp++ = colval(col,RED);
248 *drp++ = colval(col,GRN);
249 *drp++ = colval(col,BLU);
250 }
251 return(1);
252 }
253
254 static int
255 rmx_load_spec(double *drp, const RMATRIX *rm, FILE *fp)
256 {
257 uby8 *scan;
258 SCOLOR scol;
259 int j, k;
260
261 if ((rm->ncomp < 3) | (rm->ncomp > MAXCSAMP))
262 return(0);
263 scan = (uby8 *)tempbuffer((rm->ncomp+1)*rm->ncols);
264 if (!scan)
265 return(0);
266 if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0)
267 return(0);
268 for (j = 0; j < rm->ncols; j++) {
269 scolr2scolor(scol, scan+j*(rm->ncomp+1), rm->ncomp);
270 for (k = 0; k < rm->ncomp; k++)
271 *drp++ = scol[k];
272 }
273 return(1);
274 }
275
276 /* Read matrix header from input stream (cannot be XML) */
277 int
278 rmx_load_header(RMATRIX *rm, FILE *fp)
279 {
280 if (!rm | !fp)
281 return(0);
282 rmx_reset(rm); /* clear state */
283 if (rm->nrows | rm->ncols | !rm->dtype) {
284 rm->nrows = rm->ncols = 0;
285 rm->ncomp = 3;
286 setcolor(rm->cexp, 1.f, 1.f, 1.f);
287 memcpy(rm->wlpart, WLPART, sizeof(rm->wlpart));
288 rm->swapin = 0;
289 }
290 rm->dtype = DTascii; /* assumed w/o FORMAT */
291 if (getheader(fp, get_dminfo, rm) < 0) {
292 fputs("Unrecognized matrix format\n", stderr);
293 return(0);
294 }
295 /* resolution string? */
296 if ((rm->nrows <= 0) | (rm->ncols <= 0)) {
297 if (!fscnresolu(&rm->ncols, &rm->nrows, fp))
298 return(0);
299 if ((rm->dtype == DTrgbe) | (rm->dtype == DTxyze) &&
300 rm->ncomp != 3)
301 return(0);
302 }
303 if (rm->dtype == DTascii) /* set input type (WINDOWS) */
304 SET_FILE_TEXT(fp);
305 else
306 SET_FILE_BINARY(fp);
307 return(1);
308 }
309
310 /* Load next row as double (cannot be XML) */
311 int
312 rmx_load_row(double *drp, const RMATRIX *rm, FILE *fp)
313 {
314 switch (rm->dtype) {
315 case DTascii:
316 return(rmx_load_ascii(drp, rm, fp));
317 case DTfloat:
318 return(rmx_load_float(drp, rm, fp));
319 case DTdouble:
320 return(rmx_load_double(drp, rm, fp));
321 case DTrgbe:
322 case DTxyze:
323 return(rmx_load_rgbe(drp, rm, fp));
324 case DTspec:
325 return(rmx_load_spec(drp, rm, fp));
326 default:
327 fputs("Unsupported data type in rmx_load_row()\n", stderr);
328 }
329 return(0);
330 }
331
332 /* Allocate & load post-header data from stream given type set in rm->dtype */
333 int
334 rmx_load_data(RMATRIX *rm, FILE *fp)
335 {
336 int i;
337 #ifdef MAP_FILE
338 long pos; /* map memory for file > 1MB if possible */
339 if ((rm->dtype == DTdouble) & !rm->swapin && array_size(rm) >= 1L<<20 &&
340 (pos = ftell(fp)) >= 0 && !(pos % sizeof(double))) {
341 rm->mapped = mmap(NULL, array_size(rm)+pos, PROT_READ|PROT_WRITE,
342 MAP_PRIVATE, fileno(fp), 0);
343 if (rm->mapped != MAP_FAILED) {
344 rm->mtx = (double *)rm->mapped + pos/sizeof(double);
345 return(1);
346 } /* else fall back on reading into memory */
347 rm->mapped = NULL;
348 }
349 #endif
350 if (!rmx_prepare(rm)) { /* need in-core matrix array */
351 fprintf(stderr, "Cannot allocate %g MByte matrix array\n",
352 (1./(1L<<20))*(double)array_size(rm));
353 return(0);
354 }
355 for (i = 0; i < rm->nrows; i++)
356 if (!rmx_load_row(rmx_lval(rm,i,0), rm, fp))
357 return(0);
358 return(1);
359 }
360
361 /* Load matrix from supported file type */
362 RMATRIX *
363 rmx_load(const char *inspec, RMPref rmp)
364 {
365 FILE *fp;
366 RMATRIX *dnew;
367 int ok;
368
369 if (!inspec)
370 inspec = stdin_name;
371 else if (!*inspec)
372 return(NULL);
373 if (inspec == stdin_name) /* reading from stdin? */
374 fp = stdin;
375 else if (inspec[0] == '!')
376 fp = popen(inspec+1, "r");
377 else if (rmp != RMPnone) {
378 const char *sp = inspec; /* check suffix */
379 while (*sp)
380 ++sp;
381 while (sp > inspec && sp[-1] != '.')
382 --sp;
383 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
384 CMATRIX *cm = rmp==RMPtrans ? cm_loadBTDF(inspec) :
385 cm_loadBRDF(inspec, rmp==RMPreflB) ;
386 if (!cm)
387 return(NULL);
388 dnew = rmx_from_cmatrix(cm);
389 cm_free(cm);
390 dnew->dtype = DTascii;
391 return(dnew); /* return here */
392 } /* else open it ourselves */
393 fp = fopen(inspec, "r");
394 }
395 if (!fp)
396 return(NULL);
397 #ifdef getc_unlocked
398 flockfile(fp);
399 #endif
400 SET_FILE_BINARY(fp); /* load header info */
401 if (!rmx_load_header(dnew = rmx_new(0,0,3), fp)) {
402 fprintf(stderr, "Bad header in: %s\n", inspec);
403 if (inspec[0] == '!') pclose(fp);
404 else fclose(fp);
405 rmx_free(dnew);
406 return(NULL);
407 }
408 ok = rmx_load_data(dnew, fp); /* allocate & load data */
409
410 if (fp != stdin) { /* close input stream */
411 if (inspec[0] == '!')
412 pclose(fp);
413 else
414 fclose(fp);
415 }
416 #ifdef getc_unlocked
417 else
418 funlockfile(fp);
419 #endif
420 if (!ok) { /* load failure? */
421 fprintf(stderr, "Error loading data from: %s\n", inspec);
422 rmx_free(dnew);
423 return(NULL);
424 }
425 /* undo exposure? */
426 if ((dnew->cexp[0] != 1.f) |
427 (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) {
428 double cmlt[MAXCSAMP];
429 int i;
430 cmlt[0] = 1./dnew->cexp[0];
431 cmlt[1] = 1./dnew->cexp[1];
432 cmlt[2] = 1./dnew->cexp[2];
433 if (dnew->ncomp > MAXCSAMP) {
434 fprintf(stderr, "Excess spectral components in: %s\n",
435 inspec);
436 rmx_free(dnew);
437 return(NULL);
438 }
439 for (i = dnew->ncomp; i-- > 3; )
440 cmlt[i] = cmlt[1];
441 rmx_scale(dnew, cmlt);
442 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
443 }
444 return(dnew);
445 }
446
447 static int
448 rmx_write_ascii(const double *dp, int nc, int len, FILE *fp)
449 {
450 while (len-- > 0) {
451 int k = nc;
452 while (nc-- > 0)
453 fprintf(fp, " %.7e", *dp++);
454 fputc('\t', fp);
455 }
456 return(fputc('\n', fp) != EOF);
457 }
458
459 static int
460 rmx_write_float(const double *dp, int len, FILE *fp)
461 {
462 float val;
463
464 while (len--) {
465 val = *dp++;
466 if (putbinary(&val, sizeof(float), 1, fp) != 1)
467 return(0);
468 }
469 return(1);
470 }
471
472 static int
473 rmx_write_rgbe(const double *dp, int nc, int len, FILE *fp)
474 {
475 COLR *scan;
476 int j;
477
478 if ((nc != 1) & (nc != 3)) return(0);
479 scan = (COLR *)tempbuffer(sizeof(COLR)*len);
480 if (!scan) return(0);
481
482 for (j = 0; j < len; j++, dp += nc)
483 if (nc == 1)
484 setcolr(scan[j], dp[0], dp[0], dp[0]);
485 else
486 setcolr(scan[j], dp[0], dp[1], dp[2]);
487
488 return(fwritecolrs(scan, len, fp) >= 0);
489 }
490
491 static int
492 rmx_write_spec(const double *dp, int nc, int len, FILE *fp)
493 {
494 uby8 *scan;
495 SCOLOR scol;
496 int j, k;
497
498 if (nc < 3) return(0);
499 scan = (uby8 *)tempbuffer((nc+1)*len);
500 if (!scan) return(0);
501 for (j = len; j--; dp += nc) {
502 for (k = nc; k--; )
503 scol[k] = dp[k];
504 scolor2scolr(scan+j*(nc+1), scol, nc);
505 }
506 return(fwritescolrs(scan, nc, len, fp) >= 0);
507 }
508
509 /* Check if CIE XYZ primaries were specified */
510 static int
511 findCIEprims(const char *info)
512 {
513 RGBPRIMS prims;
514
515 if (!info)
516 return(0);
517 info = strstr(info, PRIMARYSTR);
518 if (!info || !primsval(prims, info))
519 return(0);
520
521 return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) &&
522 (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) &&
523 (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01));
524 }
525
526 /* Finish writing header data with resolution and format, returning type used */
527 int
528 rmx_write_header(const RMATRIX *rm, int dtype, FILE *fp)
529 {
530 if (!rm | !fp || !rm->mtx)
531 return(0);
532 if (rm->info)
533 fputs(rm->info, fp);
534 if (dtype == DTfromHeader)
535 dtype = rm->dtype;
536 else if (dtype == DTrgbe && (rm->dtype == DTxyze ||
537 findCIEprims(rm->info)))
538 dtype = DTxyze;
539 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
540 dtype = DTrgbe;
541
542 if (dtype == DTascii) /* set output type (WINDOWS) */
543 SET_FILE_TEXT(fp);
544 else
545 SET_FILE_BINARY(fp);
546 /* write exposure? */
547 if (rm->ncomp == 3 && (rm->cexp[RED] != rm->cexp[GRN]) |
548 (rm->cexp[GRN] != rm->cexp[BLU]))
549 fputcolcor(rm->cexp, fp);
550 else if (rm->cexp[GRN] != 1.f)
551 fputexpos(rm->cexp[GRN], fp);
552 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
553 if (dtype != DTspec) {
554 fprintf(fp, "NROWS=%d\n", rm->nrows);
555 fprintf(fp, "NCOLS=%d\n", rm->ncols);
556 } else if (rm->ncomp < 3)
557 return(0); /* bad # components */
558 fputncomp(rm->ncomp, fp);
559 if (dtype == DTspec || (rm->ncomp > 3 &&
560 memcmp(rm->wlpart, WLPART, sizeof(WLPART))))
561 fputwlsplit(rm->wlpart, fp);
562 } else if ((rm->ncomp != 3) & (rm->ncomp != 1))
563 return(0); /* wrong # components */
564 if ((dtype == DTfloat) | (dtype == DTdouble))
565 fputendian(fp); /* important to record */
566 fputformat(cm_fmt_id[dtype], fp);
567 fputc('\n', fp); /* end of header */
568 if (dtype <= DTspec)
569 fprtresolu(rm->ncols, rm->nrows, fp);
570 return(dtype);
571 }
572
573 /* Write out matrix data (usually by row) */
574 int
575 rmx_write_data(const double *dp, int nc, int len, int dtype, FILE *fp)
576 {
577 switch (dtype) {
578 case DTascii:
579 return(rmx_write_ascii(dp, nc, len, fp));
580 case DTfloat:
581 return(rmx_write_float(dp, nc*len, fp));
582 case DTdouble:
583 return(putbinary(dp, sizeof(*dp)*nc, len, fp) == len);
584 case DTrgbe:
585 case DTxyze:
586 return(rmx_write_rgbe(dp, nc, len, fp));
587 case DTspec:
588 return(rmx_write_spec(dp, nc, len, fp));
589 }
590 return(0);
591 }
592
593 /* Write matrix using file format indicated by dtype */
594 int
595 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
596 {
597 int ok = 0;
598 int i;
599 /* complete header */
600 dtype = rmx_write_header(rm, dtype, fp);
601 if (dtype <= 0)
602 return(0);
603 #ifdef getc_unlocked
604 flockfile(fp);
605 #endif
606 if (dtype == DTdouble) /* write all at once? */
607 ok = rmx_write_data(rm->mtx, rm->ncomp,
608 rm->nrows*rm->ncols, dtype, fp);
609 else /* else row by row */
610 for (i = 0; i < rm->nrows; i++) {
611 ok = rmx_write_data(rmx_val(rm,i,0), rm->ncomp,
612 rm->ncols, dtype, fp);
613 if (!ok) break;
614 }
615
616 if (ok) ok = (fflush(fp) == 0);
617 #ifdef getc_unlocked
618 funlockfile(fp);
619 #endif
620 if (!ok) fputs("Error writing matrix\n", stderr);
621 return(ok);
622 }
623
624 /* Allocate and assign square identity matrix with n components */
625 RMATRIX *
626 rmx_identity(const int dim, const int n)
627 {
628 RMATRIX *rid = rmx_alloc(dim, dim, n);
629 int i, k;
630
631 if (!rid)
632 return(NULL);
633 memset(rid->mtx, 0, array_size(rid));
634 for (i = dim; i--; ) {
635 double *dp = rmx_lval(rid,i,i);
636 for (k = n; k--; )
637 dp[k] = 1.;
638 }
639 return(rid);
640 }
641
642 /* Duplicate the given matrix */
643 RMATRIX *
644 rmx_copy(const RMATRIX *rm)
645 {
646 RMATRIX *dnew;
647
648 if (!rm || !rm->mtx)
649 return(NULL);
650 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
651 if (!dnew)
652 return(NULL);
653 rmx_addinfo(dnew, rm->info);
654 dnew->dtype = rm->dtype;
655 copycolor(dnew->cexp, rm->cexp);
656 memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart));
657 memcpy(dnew->mtx, rm->mtx, array_size(dnew));
658 return(dnew);
659 }
660
661 /* Allocate and assign transposed matrix */
662 RMATRIX *
663 rmx_transpose(const RMATRIX *rm)
664 {
665 RMATRIX *dnew;
666 int i, j;
667
668 if (!rm || !rm->mtx)
669 return(0);
670 if ((rm->nrows == 1) | (rm->ncols == 1)) {
671 dnew = rmx_copy(rm);
672 if (!dnew)
673 return(NULL);
674 dnew->nrows = rm->ncols;
675 dnew->ncols = rm->nrows;
676 return(dnew);
677 }
678 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
679 if (!dnew)
680 return(NULL);
681 if (rm->info) {
682 rmx_addinfo(dnew, rm->info);
683 rmx_addinfo(dnew, "Transposed rows and columns\n");
684 }
685 dnew->dtype = rm->dtype;
686 copycolor(dnew->cexp, rm->cexp);
687 memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart));
688 for (j = dnew->ncols; j--; )
689 for (i = dnew->nrows; i--; )
690 memcpy(rmx_lval(dnew,i,j), rmx_val(rm,j,i),
691 sizeof(double)*dnew->ncomp);
692 return(dnew);
693 }
694
695 /* Multiply (concatenate) two matrices and allocate the result */
696 RMATRIX *
697 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
698 {
699 RMATRIX *mres;
700 int i, j, k, h;
701
702 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
703 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
704 return(NULL);
705 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
706 if (!mres)
707 return(NULL);
708 i = rmx_newtype(m1->dtype, m2->dtype);
709 if (i)
710 mres->dtype = i;
711 else
712 rmx_addinfo(mres, rmx_mismatch_warn);
713 for (i = mres->nrows; i--; )
714 for (j = mres->ncols; j--; )
715 for (k = mres->ncomp; k--; ) {
716 double d = 0;
717 for (h = m1->ncols; h--; )
718 d += rmx_val(m1,i,h)[k] * rmx_val(m2,h,j)[k];
719 rmx_lval(mres,i,j)[k] = d;
720 }
721 return(mres);
722 }
723
724 /* Element-wise multiplication (or division) of m2 into m1 */
725 int
726 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
727 {
728 int zeroDivides = 0;
729 int i, j, k;
730
731 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
732 (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
733 return(0);
734 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
735 return(0);
736 i = rmx_newtype(m1->dtype, m2->dtype);
737 if (i)
738 m1->dtype = i;
739 else
740 rmx_addinfo(m1, rmx_mismatch_warn);
741 for (i = m1->nrows; i--; )
742 for (j = m1->ncols; j--; )
743 if (divide) {
744 double d;
745 if (m2->ncomp == 1) {
746 d = rmx_val(m2,i,j)[0];
747 if (d == 0) {
748 ++zeroDivides;
749 for (k = m1->ncomp; k--; )
750 rmx_lval(m1,i,j)[k] = 0;
751 } else {
752 d = 1./d;
753 for (k = m1->ncomp; k--; )
754 rmx_lval(m1,i,j)[k] *= d;
755 }
756 } else
757 for (k = m1->ncomp; k--; ) {
758 d = rmx_val(m2,i,j)[k];
759 if (d == 0) {
760 ++zeroDivides;
761 rmx_lval(m1,i,j)[k] = 0;
762 } else
763 rmx_lval(m1,i,j)[k] /= d;
764 }
765 } else {
766 if (m2->ncomp == 1) {
767 const double d = rmx_val(m2,i,j)[0];
768 for (k = m1->ncomp; k--; )
769 rmx_lval(m1,i,j)[k] *= d;
770 } else
771 for (k = m1->ncomp; k--; )
772 rmx_lval(m1,i,j)[k] *= rmx_val(m2,i,j)[k];
773 }
774 if (zeroDivides) {
775 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
776 errno = ERANGE;
777 }
778 return(1);
779 }
780
781 /* Sum second matrix into first, applying scale factor beforehand */
782 int
783 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
784 {
785 double *mysf = NULL;
786 int i, j, k;
787
788 if (!msum | !madd || !msum->mtx | !madd->mtx |
789 (msum->nrows != madd->nrows) |
790 (msum->ncols != madd->ncols) |
791 (msum->ncomp != madd->ncomp))
792 return(0);
793 if (!sf) {
794 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
795 if (!mysf)
796 return(0);
797 for (k = msum->ncomp; k--; )
798 mysf[k] = 1;
799 sf = mysf;
800 }
801 i = rmx_newtype(msum->dtype, madd->dtype);
802 if (i)
803 msum->dtype = i;
804 else
805 rmx_addinfo(msum, rmx_mismatch_warn);
806 for (i = msum->nrows; i--; )
807 for (j = msum->ncols; j--; ) {
808 const double *da = rmx_val(madd,i,j);
809 double *ds = rmx_lval(msum,i,j);
810 for (k = msum->ncomp; k--; )
811 ds[k] += sf[k] * da[k];
812 }
813 if (mysf)
814 free(mysf);
815 return(1);
816 }
817
818 /* Scale the given matrix by the indicated scalar component vector */
819 int
820 rmx_scale(RMATRIX *rm, const double sf[])
821 {
822 int i, j, k;
823
824 if (!rm | !sf || !rm->mtx)
825 return(0);
826 for (i = rm->nrows; i--; )
827 for (j = rm->ncols; j--; ) {
828 double *dp = rmx_lval(rm,i,j);
829 for (k = rm->ncomp; k--; )
830 dp[k] *= sf[k];
831 }
832 if (rm->info)
833 rmx_addinfo(rm, "Applied scalar\n");
834 /* XXX: should record as exposure for COLR and SCOLR types? */
835 return(1);
836 }
837
838 /* Allocate new matrix and apply component transformation */
839 RMATRIX *
840 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
841 {
842 int i, j, ks, kd;
843 RMATRIX *dnew;
844
845 if (!msrc | (n <= 0) | !cmat || !msrc->mtx)
846 return(NULL);
847 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
848 if (!dnew)
849 return(NULL);
850 if (msrc->info) {
851 char buf[128];
852 sprintf(buf, "Applied %dx%d component transform\n",
853 dnew->ncomp, msrc->ncomp);
854 rmx_addinfo(dnew, msrc->info);
855 rmx_addinfo(dnew, buf);
856 }
857 dnew->dtype = msrc->dtype;
858 for (i = dnew->nrows; i--; )
859 for (j = dnew->ncols; j--; ) {
860 const double *ds = rmx_val(msrc,i,j);
861 for (kd = dnew->ncomp; kd--; ) {
862 double d = 0;
863 for (ks = msrc->ncomp; ks--; )
864 d += cmat[kd*msrc->ncomp + ks] * ds[ks];
865 rmx_lval(dnew,i,j)[kd] = d;
866 }
867 }
868 return(dnew);
869 }
870
871 /* Convert a color matrix to newly allocated RMATRIX buffer */
872 RMATRIX *
873 rmx_from_cmatrix(const CMATRIX *cm)
874 {
875 int i, j;
876 RMATRIX *dnew;
877
878 if (!cm)
879 return(NULL);
880 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
881 if (!dnew)
882 return(NULL);
883 dnew->dtype = DTfloat;
884 for (i = dnew->nrows; i--; )
885 for (j = dnew->ncols; j--; ) {
886 const COLORV *cv = cm_lval(cm,i,j);
887 double *dp = rmx_lval(dnew,i,j);
888 dp[0] = cv[0];
889 dp[1] = cv[1];
890 dp[2] = cv[2];
891 }
892 return(dnew);
893 }
894
895 /* Convert general matrix to newly allocated CMATRIX buffer */
896 CMATRIX *
897 cm_from_rmatrix(const RMATRIX *rm)
898 {
899 int i, j;
900 CMATRIX *cnew;
901
902 if (!rm || !rm->mtx | (rm->ncomp == 2))
903 return(NULL);
904 cnew = cm_alloc(rm->nrows, rm->ncols);
905 if (!cnew)
906 return(NULL);
907 for (i = cnew->nrows; i--; )
908 for (j = cnew->ncols; j--; ) {
909 const double *dp = rmx_val(rm,i,j);
910 COLORV *cv = cm_lval(cnew,i,j);
911 switch (rm->ncomp) {
912 case 3:
913 setcolor(cv, dp[0], dp[1], dp[2]);
914 break;
915 case 1:
916 setcolor(cv, dp[0], dp[0], dp[0]);
917 break;
918 default: {
919 SCOLOR scol;
920 int k;
921 for (k = rm->ncomp; k--; )
922 scol[k] = dp[k];
923 scolor2color(cv, scol, rm->ncomp, rm->wlpart);
924 } break;
925 }
926 }
927 return(cnew);
928 }