#ifndef lint static const char RCSid[] = "$Id: rmatrix.c,v 2.65 2023/11/28 21:07:20 greg Exp $"; #endif /* * General matrix operations. */ #include #include #include "rtio.h" #include "platform.h" #include "resolu.h" #include "paths.h" #include "rmatrix.h" #if !defined(_WIN32) && !defined(_WIN64) #include #endif static const char rmx_mismatch_warn[] = "WARNING: data type mismatch\n"; #define array_size(rm) (sizeof(double)*(rm)->nrows*(rm)->ncols*(rm)->ncomp) #define mapped_size(rm) ((char *)(rm)->mtx + array_size(rm) - (char *)(rm)->mapped) /* Initialize a RMATRIX struct but don't allocate array space */ RMATRIX * rmx_new(int nr, int nc, int n) { RMATRIX *dnew; if (n <= 0) return(NULL); dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX)); if (dnew) { dnew->dtype = DTdouble; dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n; setcolor(dnew->cexp, 1.f, 1.f, 1.f); memcpy(dnew->wlpart, WLPART, sizeof(dnew->wlpart)); } return(dnew); } /* Prepare a RMATRIX for writing (allocate array if needed) */ int rmx_prepare(RMATRIX *rm) { if (!rm) return(0); if (rm->mtx) return(1); if ((rm->nrows <= 0) | (rm->ncols <= 0) | (rm->ncomp <= 0)) return(0); rm->mtx = (double *)malloc(array_size(rm)); return(rm->mtx != NULL); } /* Call rmx_new() and rmx_prepare() */ RMATRIX * rmx_alloc(int nr, int nc, int n) { RMATRIX *dnew = rmx_new(nr, nc, n); if (dnew && !rmx_prepare(dnew)) { rmx_free(dnew); dnew = NULL; } return(dnew); } /* Free a RMATRIX array */ void rmx_free(RMATRIX *rm) { if (!rm) return; if (rm->info) free(rm->info); #ifdef MAP_FILE if (rm->mapped) munmap(rm->mapped, mapped_size(rm)); else #endif free(rm->mtx); free(rm); } /* Resolve data type based on two input types (returns 0 for mismatch) */ int rmx_newtype(int dtyp1, int dtyp2) { if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp1==DTspec) | (dtyp2==DTxyze) | (dtyp2==DTrgbe) | (dtyp2==DTspec) && dtyp1 != dtyp2) return(0); if (dtyp1 < dtyp2) return(dtyp1); return(dtyp2); } /* Append header information associated with matrix data */ int rmx_addinfo(RMATRIX *rm, const char *info) { int oldlen = 0; if (!rm || !info || !*info) return(0); if (!rm->info) { rm->info = (char *)malloc(strlen(info)+1); if (rm->info) rm->info[0] = '\0'; } else { oldlen = strlen(rm->info); rm->info = (char *)realloc(rm->info, oldlen+strlen(info)+1); } if (!rm->info) return(0); strcpy(rm->info+oldlen, info); return(1); } static int get_dminfo(char *s, void *p) { RMATRIX *ip = (RMATRIX *)p; char fmt[MAXFMTLEN]; int i; if (headidval(NULL, s)) return(0); if (isncomp(s)) { ip->ncomp = ncompval(s); return(0); } if (!strncmp(s, "NROWS=", 6)) { ip->nrows = atoi(s+6); return(0); } if (!strncmp(s, "NCOLS=", 6)) { ip->ncols = atoi(s+6); return(0); } if ((i = isbigendian(s)) >= 0) { ip->swapin = (nativebigendian() != i); return(0); } if (isexpos(s)) { float f = exposval(s); scalecolor(ip->cexp, f); return(0); } if (iscolcor(s)) { COLOR ctmp; colcorval(ctmp, s); multcolor(ip->cexp, ctmp); return(0); } if (iswlsplit(s)) { wlsplitval(ip->wlpart, s); return(0); } if (!formatval(fmt, s)) { rmx_addinfo(ip, s); return(0); } /* else check format */ for (i = 1; i < DTend; i++) if (!strcmp(fmt, cm_fmt_id[i])) { ip->dtype = i; return(0); } return(-1); } static int rmx_load_ascii(double *drp, const RMATRIX *rm, FILE *fp) { int j, k; for (j = 0; j < rm->ncols; j++) for (k = rm->ncomp; k-- > 0; ) if (fscanf(fp, "%lf", drp++) != 1) return(0); return(1); } static int rmx_load_float(double *drp, const RMATRIX *rm, FILE *fp) { int j, k; float val[100]; if (rm->ncomp > 100) { fputs("Unsupported # components in rmx_load_float()\n", stderr); exit(1); } for (j = 0; j < rm->ncols; j++) { if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp) return(0); if (rm->swapin) swap32((char *)val, rm->ncomp); for (k = 0; k < rm->ncomp; k++) *drp++ = val[k]; } return(1); } static int rmx_load_double(double *drp, const RMATRIX *rm, FILE *fp) { if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols) return(0); if (rm->swapin) swap64((char *)drp, rm->ncols*rm->ncomp); return(1); } static int rmx_load_rgbe(double *drp, const RMATRIX *rm, FILE *fp) { COLR *scan; COLOR col; int j; if (rm->ncomp != 3) return(0); scan = (COLR *)tempbuffer(sizeof(COLR)*rm->ncols); if (!scan) return(0); if (freadcolrs(scan, rm->ncols, fp) < 0) return(0); for (j = 0; j < rm->ncols; j++) { colr_color(col, scan[j]); *drp++ = colval(col,RED); *drp++ = colval(col,GRN); *drp++ = colval(col,BLU); } return(1); } static int rmx_load_spec(double *drp, const RMATRIX *rm, FILE *fp) { uby8 *scan; SCOLOR scol; int j, k; if ((rm->ncomp < 3) | (rm->ncomp > MAXCSAMP)) return(0); scan = (uby8 *)tempbuffer((rm->ncomp+1)*rm->ncols); if (!scan) return(0); if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0) return(0); for (j = 0; j < rm->ncols; j++) { scolr2scolor(scol, scan+j*(rm->ncomp+1), rm->ncomp); for (k = 0; k < rm->ncomp; k++) *drp++ = scol[k]; } return(1); } /* Read matrix header from input stream (cannot be XML) */ int rmx_load_header(RMATRIX *rm, FILE *fp) { if (!rm | !fp) return(0); if (rm->info) { /* clear state */ free(rm->info); rm->info = NULL; } if (rm->mtx) { /* ...and data */ #ifdef MAP_FILE if (rm->mapped) { munmap(rm->mapped, mapped_size(rm)); rm->mapped = NULL; } else #endif free(rm->mtx); rm->mtx = NULL; } if (rm->nrows | rm->ncols | !rm->dtype) { rm->nrows = rm->ncols = 0; rm->ncomp = 3; setcolor(rm->cexp, 1.f, 1.f, 1.f); memcpy(rm->wlpart, WLPART, sizeof(rm->wlpart)); rm->swapin = 0; } SET_FILE_BINARY(fp); rm->dtype = DTascii; /* assumed w/o FORMAT */ if (getheader(fp, get_dminfo, rm) < 0) { fputs("Unrecognized matrix format\n", stderr); return(0); } /* resolution string? */ if ((rm->nrows <= 0) | (rm->ncols <= 0)) { if (!fscnresolu(&rm->ncols, &rm->nrows, fp)) return(0); if ((rm->dtype == DTrgbe) | (rm->dtype == DTxyze) && rm->ncomp != 3) return(0); } return(1); } /* Load next row as double (cannot be XML) */ int rmx_load_row(double *drp, const RMATRIX *rm, FILE *fp) { switch (rm->dtype) { case DTascii: return(rmx_load_ascii(drp, rm, fp)); case DTfloat: return(rmx_load_float(drp, rm, fp)); case DTdouble: return(rmx_load_double(drp, rm, fp)); case DTrgbe: case DTxyze: return(rmx_load_rgbe(drp, rm, fp)); case DTspec: return(rmx_load_spec(drp, rm, fp)); default: fputs("Unsupported data type in rmx_load_row()\n", stderr); } return(0); } /* Allocate & load post-header data from stream given type set in rm->dtype */ int rmx_load_data(RMATRIX *rm, FILE *fp) { int i; #ifdef MAP_FILE long pos; /* map memory for file > 1MB if possible */ if ((rm->dtype == DTdouble) & !rm->swapin && array_size(rm) >= 1L<<20 && (pos = ftell(fp)) >= 0 && !(pos % sizeof(double))) { rm->mapped = mmap(NULL, array_size(rm)+pos, PROT_READ|PROT_WRITE, MAP_PRIVATE, fileno(fp), 0); if (rm->mapped != MAP_FAILED) { rm->mtx = (double *)rm->mapped + pos/sizeof(double); return(1); } /* else fall back on reading into memory */ rm->mapped = NULL; } #endif if (!rmx_prepare(rm)) { /* need in-core matrix array */ fprintf(stderr, "Cannot allocate %g MByte matrix array\n", (1./(1L<<20))*(double)array_size(rm)); return(0); } if (rm->dtype == DTascii) SET_FILE_TEXT(fp); for (i = 0; i < rm->nrows; i++) if (!rmx_load_row(rmx_lval(rm,i,0), rm, fp)) return(0); return(1); } /* Load matrix from supported file type */ RMATRIX * rmx_load(const char *inspec, RMPref rmp) { FILE *fp; RMATRIX *dnew; int ok; if (!inspec) inspec = stdin_name; else if (!*inspec) return(NULL); if (inspec == stdin_name) /* reading from stdin? */ fp = stdin; else if (inspec[0] == '!') fp = popen(inspec+1, "r"); else { const char *sp = inspec; /* check suffix */ while (*sp) ++sp; while (sp > inspec && sp[-1] != '.') --sp; if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */ CMATRIX *cm = rmp==RMPtrans ? cm_loadBTDF(inspec) : cm_loadBRDF(inspec, rmp==RMPreflB) ; if (!cm) return(NULL); dnew = rmx_from_cmatrix(cm); cm_free(cm); dnew->dtype = DTascii; return(dnew); /* return here */ } /* else open it ourselves */ fp = fopen(inspec, "r"); } if (!fp) return(NULL); #ifdef getc_unlocked flockfile(fp); #endif /* load header info */ if (!rmx_load_header(dnew = rmx_new(0,0,3), fp)) { fprintf(stderr, "Bad header in: %s\n", inspec); if (inspec[0] == '!') pclose(fp); else fclose(fp); rmx_free(dnew); return(NULL); } ok = rmx_load_data(dnew, fp); /* allocate & load data */ if (fp != stdin) { /* close input stream */ if (inspec[0] == '!') pclose(fp); else fclose(fp); } #ifdef getc_unlocked else funlockfile(fp); #endif if (!ok) { /* load failure? */ fprintf(stderr, "Error loading data from: %s\n", inspec); rmx_free(dnew); return(NULL); } /* undo exposure? */ if ((dnew->cexp[0] != 1.f) | (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) { double cmlt[MAXCSAMP]; int i; cmlt[0] = 1./dnew->cexp[0]; cmlt[1] = 1./dnew->cexp[1]; cmlt[2] = 1./dnew->cexp[2]; if (dnew->ncomp > MAXCSAMP) { fprintf(stderr, "Excess spectral components in: %s\n", inspec); rmx_free(dnew); return(NULL); } for (i = dnew->ncomp; i-- > 3; ) cmlt[i] = cmlt[1]; rmx_scale(dnew, cmlt); setcolor(dnew->cexp, 1.f, 1.f, 1.f); } return(dnew); } static int rmx_write_ascii(const RMATRIX *rm, FILE *fp) { const char *fmt = (rm->dtype == DTfloat) ? " %.7e" : (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) | (rm->dtype == DTspec) ? " %.3e" : " %.15e" ; int i, j, k; for (i = 0; i < rm->nrows; i++) { for (j = 0; j < rm->ncols; j++) { const double *dp = rmx_val(rm,i,j); for (k = 0; k < rm->ncomp; k++) fprintf(fp, fmt, dp[k]); fputc('\t', fp); } fputc('\n', fp); } return(1); } static int rmx_write_float(const RMATRIX *rm, FILE *fp) { int i, j, k; float val[100]; if (rm->ncomp > 100) { fputs("Unsupported # components in rmx_write_float()\n", stderr); exit(1); } for (i = 0; i < rm->nrows; i++) for (j = 0; j < rm->ncols; j++) { const double *dp = rmx_val(rm,i,j); for (k = rm->ncomp; k--; ) val[k] = (float)dp[k]; if (putbinary(val, sizeof(float), rm->ncomp, fp) != rm->ncomp) return(0); } return(1); } static int rmx_write_double(const RMATRIX *rm, FILE *fp) { int i; for (i = 0; i < rm->nrows; i++) if (putbinary(rmx_val(rm,i,0), sizeof(double)*rm->ncomp, rm->ncols, fp) != rm->ncols) return(0); return(1); } static int rmx_write_rgbe(const RMATRIX *rm, FILE *fp) { COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols); int i, j; if (!scan) return(0); for (i = 0; i < rm->nrows; i++) { for (j = rm->ncols; j--; ) { const double *dp = rmx_val(rm,i,j); if (rm->ncomp == 1) setcolr(scan[j], dp[0], dp[0], dp[0]); else setcolr(scan[j], dp[0], dp[1], dp[2]); } if (fwritecolrs(scan, rm->ncols, fp) < 0) { free(scan); return(0); } } free(scan); return(1); } static int rmx_write_spec(const RMATRIX *rm, FILE *fp) { uby8 *scan = (uby8 *)malloc((rm->ncomp+1)*rm->ncols); int ok = 1; SCOLOR scol; int i, j, k; if (!scan) return(0); for (i = 0; i < rm->nrows; i++) { for (j = rm->ncols; j--; ) { const double *dp = rmx_val(rm,i,j); for (k = rm->ncomp; k--; ) scol[k] = dp[k]; scolor2scolr(scan+j*(rm->ncomp+1), scol, rm->ncomp); } if (fwritescolrs(scan, rm->ncomp, rm->ncols, fp) < 0) { ok = 0; break; } } free(scan); return(ok); } /* Check if CIE XYZ primaries were specified */ static int findCIEprims(const char *info) { RGBPRIMS prims; if (!info) return(0); info = strstr(info, PRIMARYSTR); if (!info || !primsval(prims, info)) return(0); return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) && (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) && (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01)); } /* Write matrix to file type indicated by dtype */ int rmx_write(const RMATRIX *rm, int dtype, FILE *fp) { int ok = 1; if (!rm | !fp || !rm->mtx) return(0); #ifdef getc_unlocked flockfile(fp); #endif if (rm->info) /* complete header */ fputs(rm->info, fp); if (dtype == DTfromHeader) dtype = rm->dtype; else if (dtype == DTrgbe && (rm->dtype == DTxyze || findCIEprims(rm->info))) dtype = DTxyze; else if ((dtype == DTxyze) & (rm->dtype == DTrgbe)) dtype = DTrgbe; /* write exposure? */ if (rm->ncomp == 3 && (rm->cexp[RED] != rm->cexp[GRN]) | (rm->cexp[GRN] != rm->cexp[BLU])) fputcolcor(rm->cexp, fp); else if (rm->cexp[GRN] != 1.f) fputexpos(rm->cexp[GRN], fp); if ((dtype != DTrgbe) & (dtype != DTxyze)) { if (dtype != DTspec) { fprintf(fp, "NROWS=%d\n", rm->nrows); fprintf(fp, "NCOLS=%d\n", rm->ncols); } else if (rm->ncomp < 3) return(0); /* bad # components */ fputncomp(rm->ncomp, fp); if (dtype == DTspec || (rm->ncomp > 3 && memcmp(rm->wlpart, WLPART, sizeof(WLPART)))) fputwlsplit(rm->wlpart, fp); } else if ((rm->ncomp != 3) & (rm->ncomp != 1)) return(0); /* wrong # components */ if ((dtype == DTfloat) | (dtype == DTdouble)) fputendian(fp); /* important to record */ fputformat(cm_fmt_id[dtype], fp); fputc('\n', fp); /* end of header */ switch (dtype) { /* write data */ case DTascii: ok = rmx_write_ascii(rm, fp); break; case DTfloat: ok = rmx_write_float(rm, fp); break; case DTdouble: ok = rmx_write_double(rm, fp); break; case DTrgbe: case DTxyze: fprtresolu(rm->ncols, rm->nrows, fp); ok = rmx_write_rgbe(rm, fp); break; case DTspec: fprtresolu(rm->ncols, rm->nrows, fp); ok = rmx_write_spec(rm, fp); break; default: return(0); } ok &= (fflush(fp) == 0); #ifdef getc_unlocked funlockfile(fp); #endif if (!ok) fputs("Error writing matrix\n", stderr); return(ok); } /* Allocate and assign square identity matrix with n components */ RMATRIX * rmx_identity(const int dim, const int n) { RMATRIX *rid = rmx_alloc(dim, dim, n); int i, k; if (!rid) return(NULL); memset(rid->mtx, 0, array_size(rid)); for (i = dim; i--; ) { double *dp = rmx_lval(rid,i,i); for (k = n; k--; ) dp[k] = 1.; } return(rid); } /* Duplicate the given matrix */ RMATRIX * rmx_copy(const RMATRIX *rm) { RMATRIX *dnew; if (!rm) return(NULL); dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp); if (!dnew) return(NULL); rmx_addinfo(dnew, rm->info); dnew->dtype = rm->dtype; copycolor(dnew->cexp, rm->cexp); memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart)); memcpy(dnew->mtx, rm->mtx, array_size(dnew)); return(dnew); } /* Allocate and assign transposed matrix */ RMATRIX * rmx_transpose(const RMATRIX *rm) { RMATRIX *dnew; int i, j; if (!rm) return(0); if ((rm->nrows == 1) | (rm->ncols == 1)) { dnew = rmx_copy(rm); if (!dnew) return(NULL); dnew->nrows = rm->ncols; dnew->ncols = rm->nrows; return(dnew); } dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp); if (!dnew) return(NULL); if (rm->info) { rmx_addinfo(dnew, rm->info); rmx_addinfo(dnew, "Transposed rows and columns\n"); } dnew->dtype = rm->dtype; copycolor(dnew->cexp, rm->cexp); memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart)); for (j = dnew->ncols; j--; ) for (i = dnew->nrows; i--; ) memcpy(rmx_lval(dnew,i,j), rmx_val(rm,j,i), sizeof(double)*dnew->ncomp); return(dnew); } /* Multiply (concatenate) two matrices and allocate the result */ RMATRIX * rmx_multiply(const RMATRIX *m1, const RMATRIX *m2) { RMATRIX *mres; int i, j, k, h; if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows)) return(NULL); mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp); if (!mres) return(NULL); i = rmx_newtype(m1->dtype, m2->dtype); if (i) mres->dtype = i; else rmx_addinfo(mres, rmx_mismatch_warn); for (i = mres->nrows; i--; ) for (j = mres->ncols; j--; ) for (k = mres->ncomp; k--; ) { double d = 0; for (h = m1->ncols; h--; ) d += rmx_val(m1,i,h)[k] * rmx_val(m2,h,j)[k]; rmx_lval(mres,i,j)[k] = d; } return(mres); } /* Element-wise multiplication (or division) of m2 into m1 */ int rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide) { int zeroDivides = 0; int i, j, k; if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows)) return(0); if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp)) return(0); i = rmx_newtype(m1->dtype, m2->dtype); if (i) m1->dtype = i; else rmx_addinfo(m1, rmx_mismatch_warn); for (i = m1->nrows; i--; ) for (j = m1->ncols; j--; ) if (divide) { double d; if (m2->ncomp == 1) { d = rmx_val(m2,i,j)[0]; if (d == 0) { ++zeroDivides; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] = 0; } else { d = 1./d; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= d; } } else for (k = m1->ncomp; k--; ) { d = rmx_val(m2,i,j)[k]; if (d == 0) { ++zeroDivides; rmx_lval(m1,i,j)[k] = 0; } else rmx_lval(m1,i,j)[k] /= d; } } else { if (m2->ncomp == 1) { const double d = rmx_val(m2,i,j)[0]; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= d; } else for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= rmx_val(m2,i,j)[k]; } if (zeroDivides) { rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n"); errno = ERANGE; } return(1); } /* Sum second matrix into first, applying scale factor beforehand */ int rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[]) { double *mysf = NULL; int i, j, k; if (!msum | !madd || (msum->nrows != madd->nrows) | (msum->ncols != madd->ncols) | (msum->ncomp != madd->ncomp)) return(0); if (!sf) { mysf = (double *)malloc(sizeof(double)*msum->ncomp); if (!mysf) return(0); for (k = msum->ncomp; k--; ) mysf[k] = 1; sf = mysf; } i = rmx_newtype(msum->dtype, madd->dtype); if (i) msum->dtype = i; else rmx_addinfo(msum, rmx_mismatch_warn); for (i = msum->nrows; i--; ) for (j = msum->ncols; j--; ) { const double *da = rmx_val(madd,i,j); double *ds = rmx_lval(msum,i,j); for (k = msum->ncomp; k--; ) ds[k] += sf[k] * da[k]; } if (mysf) free(mysf); return(1); } /* Scale the given matrix by the indicated scalar component vector */ int rmx_scale(RMATRIX *rm, const double sf[]) { int i, j, k; if (!rm | !sf) return(0); for (i = rm->nrows; i--; ) for (j = rm->ncols; j--; ) { double *dp = rmx_lval(rm,i,j); for (k = rm->ncomp; k--; ) dp[k] *= sf[k]; } if (rm->info) rmx_addinfo(rm, "Applied scalar\n"); /* XXX: should record as exposure for COLR and SCOLR types? */ return(1); } /* Allocate new matrix and apply component transformation */ RMATRIX * rmx_transform(const RMATRIX *msrc, int n, const double cmat[]) { int i, j, ks, kd; RMATRIX *dnew; if (!msrc | (n <= 0) | !cmat) return(NULL); dnew = rmx_alloc(msrc->nrows, msrc->ncols, n); if (!dnew) return(NULL); if (msrc->info) { char buf[128]; sprintf(buf, "Applied %dx%d component transform\n", dnew->ncomp, msrc->ncomp); rmx_addinfo(dnew, msrc->info); rmx_addinfo(dnew, buf); } dnew->dtype = msrc->dtype; for (i = dnew->nrows; i--; ) for (j = dnew->ncols; j--; ) { const double *ds = rmx_val(msrc,i,j); for (kd = dnew->ncomp; kd--; ) { double d = 0; for (ks = msrc->ncomp; ks--; ) d += cmat[kd*msrc->ncomp + ks] * ds[ks]; rmx_lval(dnew,i,j)[kd] = d; } } return(dnew); } /* Convert a color matrix to newly allocated RMATRIX buffer */ RMATRIX * rmx_from_cmatrix(const CMATRIX *cm) { int i, j; RMATRIX *dnew; if (!cm) return(NULL); dnew = rmx_alloc(cm->nrows, cm->ncols, 3); if (!dnew) return(NULL); dnew->dtype = DTfloat; for (i = dnew->nrows; i--; ) for (j = dnew->ncols; j--; ) { const COLORV *cv = cm_lval(cm,i,j); double *dp = rmx_lval(dnew,i,j); dp[0] = cv[0]; dp[1] = cv[1]; dp[2] = cv[2]; } return(dnew); } /* Convert general matrix to newly allocated CMATRIX buffer */ CMATRIX * cm_from_rmatrix(const RMATRIX *rm) { int i, j; CMATRIX *cnew; if (!rm || !rm->mtx | (rm->ncomp == 2)) return(NULL); cnew = cm_alloc(rm->nrows, rm->ncols); if (!cnew) return(NULL); for (i = cnew->nrows; i--; ) for (j = cnew->ncols; j--; ) { const double *dp = rmx_val(rm,i,j); COLORV *cv = cm_lval(cnew,i,j); switch (rm->ncomp) { case 3: setcolor(cv, dp[0], dp[1], dp[2]); break; case 1: setcolor(cv, dp[0], dp[0], dp[0]); break; default: { SCOLOR scol; int k; for (k = rm->ncomp; k--; ) scol[k] = dp[k]; scolor2color(cv, scol, rm->ncomp, rm->wlpart); } break; } } return(cnew); }