#ifndef lint static const char RCSid[] = "$Id: rmatrix.c,v 2.54 2022/03/05 15:33:09 greg Exp $"; #endif /* * General matrix operations. */ #include #include #include "rtio.h" #include "platform.h" #include "resolu.h" #include "paths.h" #include "rmatrix.h" #if !defined(_WIN32) && !defined(_WIN64) #include #endif static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n"; #define array_size(rm) (sizeof(double)*(rm)->nrows*(rm)->ncols*(rm)->ncomp) #define mapped_size(rm) ((char *)(rm)->mtx + array_size(rm) - (char *)(rm)->mapped) /* Initialize a RMATRIX struct but don't allocate array space */ RMATRIX * rmx_new(int nr, int nc, int n) { RMATRIX *dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX)); if (dnew) { dnew->dtype = DTdouble; dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n; } return(dnew); } /* Prepare a RMATRIX for writing (allocate array if needed) */ int rmx_prepare(RMATRIX *rm) { if (!rm) return(0); if (rm->mtx) return(1); rm->mtx = (double *)malloc(array_size(rm)); return(rm->mtx != NULL); } /* Call rmx_new() and rmx_prepare() */ RMATRIX * rmx_alloc(int nr, int nc, int n) { RMATRIX *dnew = rmx_new(nr, nc, n); if (dnew && !rmx_prepare(dnew)) { rmx_free(dnew); dnew = NULL; } return(dnew); } /* Free a RMATRIX array */ void rmx_free(RMATRIX *rm) { if (!rm) return; if (rm->info) free(rm->info); #ifdef MAP_FILE if (rm->mapped) munmap(rm->mapped, mapped_size(rm)); else #endif free(rm->mtx); free(rm); } /* Resolve data type based on two input types (returns 0 for mismatch) */ int rmx_newtype(int dtyp1, int dtyp2) { if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp2==DTxyze) | (dtyp2==DTrgbe) && dtyp1 != dtyp2) return(0); if (dtyp1 < dtyp2) return(dtyp1); return(dtyp2); } /* Append header information associated with matrix data */ int rmx_addinfo(RMATRIX *rm, const char *info) { int oldlen = 0; if (!rm || !info || !*info) return(0); if (!rm->info) { rm->info = (char *)malloc(strlen(info)+1); if (rm->info) rm->info[0] = '\0'; } else { oldlen = strlen(rm->info); rm->info = (char *)realloc(rm->info, oldlen+strlen(info)+1); } if (!rm->info) return(0); strcpy(rm->info+oldlen, info); return(1); } static int get_dminfo(char *s, void *p) { RMATRIX *ip = (RMATRIX *)p; char fmt[MAXFMTLEN]; int i; if (headidval(fmt, s)) return(0); if (!strncmp(s, "NCOMP=", 6)) { ip->ncomp = atoi(s+6); return(0); } if (!strncmp(s, "NROWS=", 6)) { ip->nrows = atoi(s+6); return(0); } if (!strncmp(s, "NCOLS=", 6)) { ip->ncols = atoi(s+6); return(0); } if ((i = isbigendian(s)) >= 0) { ip->swapin = (nativebigendian() != i); return(0); } if (isexpos(s)) { float f = exposval(s); scalecolor(ip->cexp, f); return(0); } if (iscolcor(s)) { COLOR ctmp; colcorval(ctmp, s); multcolor(ip->cexp, ctmp); return(0); } if (!formatval(fmt, s)) { rmx_addinfo(ip, s); return(0); } /* else check format */ for (i = 1; i < DTend; i++) if (!strcmp(fmt, cm_fmt_id[i])) { ip->dtype = i; return(0); } return(-1); } static int rmx_load_ascii(RMATRIX *rm, FILE *fp) { int i, j, k; if (!rmx_prepare(rm)) return(0); for (i = 0; i < rm->nrows; i++) for (j = 0; j < rm->ncols; j++) { double *dp = rmx_lval(rm,i,j); for (k = 0; k < rm->ncomp; k++) if (fscanf(fp, "%lf", &dp[k]) != 1) return(0); } return(1); } static int rmx_load_float(RMATRIX *rm, FILE *fp) { int i, j, k; float val[100]; if (rm->ncomp > 100) { fputs("Unsupported # components in rmx_load_float()\n", stderr); exit(1); } if (!rmx_prepare(rm)) return(0); for (i = 0; i < rm->nrows; i++) for (j = 0; j < rm->ncols; j++) { double *dp = rmx_lval(rm,i,j); if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp) return(0); if (rm->swapin) swap32((char *)val, rm->ncomp); for (k = rm->ncomp; k--; ) dp[k] = val[k]; } return(1); } static int rmx_load_double(RMATRIX *rm, FILE *fp) { int i; #ifdef MAP_FILE long pos; /* map memory to file if possible */ if (!rm->swapin && array_size(rm) >= 1L<<20 && (pos = ftell(fp)) >= 0 && !(pos % sizeof(double))) { rm->mapped = mmap(NULL, array_size(rm)+pos, PROT_READ|PROT_WRITE, MAP_PRIVATE, fileno(fp), 0); if (rm->mapped != MAP_FAILED) { rm->mtx = (double *)rm->mapped + pos/sizeof(double); return(1); } rm->mapped = NULL; } #endif if (!rmx_prepare(rm)) return(0); for (i = 0; i < rm->nrows; i++) { if (getbinary(rmx_lval(rm,i,0), sizeof(double)*rm->ncomp, rm->ncols, fp) != rm->ncols) return(0); if (rm->swapin) swap64((char *)rmx_lval(rm,i,0), rm->ncols*rm->ncomp); } return(1); } static int rmx_load_rgbe(RMATRIX *rm, FILE *fp) { COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols); int i, j; if (!scan) return(0); if (!rmx_prepare(rm)) return(0); for (i = 0; i < rm->nrows; i++) { double *dp = rmx_lval(rm,i,j); if (freadscan(scan, rm->ncols, fp) < 0) { free(scan); return(0); } for (j = 0; j < rm->ncols; j++, dp += 3) { dp[0] = colval(scan[j],RED); dp[1] = colval(scan[j],GRN); dp[2] = colval(scan[j],BLU); } } free(scan); return(1); } /* Load matrix from supported file type */ RMATRIX * rmx_load(const char *inspec, RMPref rmp) { FILE *fp; RMATRIX *dnew; if (!inspec) inspec = stdin_name; else if (!*inspec) return(NULL); if (inspec == stdin_name) { /* reading from stdin? */ fp = stdin; } else if (inspec[0] == '!') { if (!(fp = popen(inspec+1, "r"))) return(NULL); } else { const char *sp = inspec; /* check suffix */ while (*sp) ++sp; while (sp > inspec && sp[-1] != '.') --sp; if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */ CMATRIX *cm = rmp==RMPtrans ? cm_loadBTDF(inspec) : cm_loadBRDF(inspec, rmp==RMPreflB) ; if (!cm) return(NULL); dnew = rmx_from_cmatrix(cm); cm_free(cm); dnew->dtype = DTascii; return(dnew); } /* else open it ourselves */ if (!(fp = fopen(inspec, "r"))) return(NULL); } SET_FILE_BINARY(fp); #ifdef getc_unlocked flockfile(fp); #endif if (!(dnew = rmx_new(0,0,3))) { fclose(fp); return(NULL); } dnew->dtype = DTascii; /* assumed w/o FORMAT */ dnew->cexp[0] = dnew->cexp[1] = dnew->cexp[2] = 1.f; if (getheader(fp, get_dminfo, dnew) < 0) { fclose(fp); return(NULL); } if ((dnew->nrows <= 0) | (dnew->ncols <= 0)) { if (!fscnresolu(&dnew->ncols, &dnew->nrows, fp)) { fclose(fp); return(NULL); } if ((dnew->dtype == DTrgbe) | (dnew->dtype == DTxyze) && dnew->ncomp != 3) { fclose(fp); return(NULL); } } switch (dnew->dtype) { case DTascii: SET_FILE_TEXT(fp); if (!rmx_load_ascii(dnew, fp)) goto loaderr; dnew->dtype = DTascii; /* should leave double? */ break; case DTfloat: if (!rmx_load_float(dnew, fp)) goto loaderr; dnew->dtype = DTfloat; break; case DTdouble: if (!rmx_load_double(dnew, fp)) goto loaderr; dnew->dtype = DTdouble; break; case DTrgbe: case DTxyze: if (!rmx_load_rgbe(dnew, fp)) goto loaderr; /* undo exposure? */ if ((dnew->cexp[0] != 1.f) | (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) { double cmlt[3]; cmlt[0] = 1./dnew->cexp[0]; cmlt[1] = 1./dnew->cexp[1]; cmlt[2] = 1./dnew->cexp[2]; rmx_scale(dnew, cmlt); } dnew->swapin = 0; break; default: goto loaderr; } if (fp != stdin) { if (inspec[0] == '!') pclose(fp); else fclose(fp); } #ifdef getc_unlocked else funlockfile(fp); #endif return(dnew); loaderr: /* should report error? */ if (inspec[0] == '!') pclose(fp); else fclose(fp); rmx_free(dnew); return(NULL); } static int rmx_write_ascii(const RMATRIX *rm, FILE *fp) { const char *fmt = (rm->dtype == DTfloat) ? " %.7e" : (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" : " %.15e" ; int i, j, k; for (i = 0; i < rm->nrows; i++) { for (j = 0; j < rm->ncols; j++) { const double *dp = rmx_lval(rm,i,j); for (k = 0; k < rm->ncomp; k++) fprintf(fp, fmt, dp[k]); fputc('\t', fp); } fputc('\n', fp); } return(1); } static int rmx_write_float(const RMATRIX *rm, FILE *fp) { int i, j, k; float val[100]; if (rm->ncomp > 100) { fputs("Unsupported # components in rmx_write_float()\n", stderr); exit(1); } for (i = 0; i < rm->nrows; i++) for (j = 0; j < rm->ncols; j++) { const double *dp = rmx_lval(rm,i,j); for (k = rm->ncomp; k--; ) val[k] = (float)dp[k]; if (putbinary(val, sizeof(float), rm->ncomp, fp) != rm->ncomp) return(0); } return(1); } static int rmx_write_double(const RMATRIX *rm, FILE *fp) { int i; for (i = 0; i < rm->nrows; i++) if (putbinary(rmx_lval(rm,i,0), sizeof(double)*rm->ncomp, rm->ncols, fp) != rm->ncols) return(0); return(1); } static int rmx_write_rgbe(const RMATRIX *rm, FILE *fp) { COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols); int i, j; if (!scan) return(0); for (i = 0; i < rm->nrows; i++) { for (j = rm->ncols; j--; ) { const double *dp = rmx_lval(rm,i,j); if (rm->ncomp == 1) setcolr(scan[j], dp[0], dp[0], dp[0]); else setcolr(scan[j], dp[0], dp[1], dp[2]); } if (fwritecolrs(scan, rm->ncols, fp) < 0) { free(scan); return(0); } } free(scan); return(1); } /* Check if CIE XYZ primaries were specified */ static int findCIEprims(const char *info) { RGBPRIMS prims; if (!info) return(0); info = strstr(info, PRIMARYSTR); if (!info || !primsval(prims, info)) return(0); return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) && (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) && (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01)); } /* Write matrix to file type indicated by dtype */ int rmx_write(const RMATRIX *rm, int dtype, FILE *fp) { int ok = 1; if (!rm | !fp || !rm->mtx) return(0); #ifdef getc_unlocked flockfile(fp); #endif /* complete header */ if (rm->info) fputs(rm->info, fp); if (dtype == DTfromHeader) dtype = rm->dtype; else if (dtype == DTrgbe && (rm->dtype == DTxyze || findCIEprims(rm->info))) dtype = DTxyze; else if ((dtype == DTxyze) & (rm->dtype == DTrgbe)) dtype = DTrgbe; if ((dtype != DTrgbe) & (dtype != DTxyze)) { fprintf(fp, "NROWS=%d\n", rm->nrows); fprintf(fp, "NCOLS=%d\n", rm->ncols); fprintf(fp, "NCOMP=%d\n", rm->ncomp); } else if ((rm->ncomp != 3) & (rm->ncomp != 1)) return(0); /* wrong # components */ if ((dtype == DTfloat) | (dtype == DTdouble)) fputendian(fp); /* important to record */ fputformat(cm_fmt_id[dtype], fp); fputc('\n', fp); switch (dtype) { /* write data */ case DTascii: ok = rmx_write_ascii(rm, fp); break; case DTfloat: ok = rmx_write_float(rm, fp); break; case DTdouble: ok = rmx_write_double(rm, fp); break; case DTrgbe: case DTxyze: fprtresolu(rm->ncols, rm->nrows, fp); ok = rmx_write_rgbe(rm, fp); break; default: return(0); } ok &= (fflush(fp) == 0); #ifdef getc_unlocked funlockfile(fp); #endif return(ok); } /* Allocate and assign square identity matrix with n components */ RMATRIX * rmx_identity(const int dim, const int n) { RMATRIX *rid = rmx_alloc(dim, dim, n); int i, k; if (!rid) return(NULL); memset(rid->mtx, 0, array_size(rid)); for (i = dim; i--; ) { double *dp = rmx_lval(rid,i,i); for (k = n; k--; ) dp[k] = 1.; } return(rid); } /* Duplicate the given matrix */ RMATRIX * rmx_copy(const RMATRIX *rm) { RMATRIX *dnew; if (!rm) return(NULL); dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp); if (!dnew) return(NULL); rmx_addinfo(dnew, rm->info); dnew->dtype = rm->dtype; memcpy(dnew->mtx, rm->mtx, array_size(dnew)); return(dnew); } /* Allocate and assign transposed matrix */ RMATRIX * rmx_transpose(const RMATRIX *rm) { RMATRIX *dnew; int i, j, k; if (!rm) return(0); if ((rm->nrows == 1) | (rm->ncols == 1)) { dnew = rmx_copy(rm); if (!dnew) return(NULL); dnew->nrows = rm->ncols; dnew->ncols = rm->nrows; return(dnew); } dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp); if (!dnew) return(NULL); if (rm->info) { rmx_addinfo(dnew, rm->info); rmx_addinfo(dnew, "Transposed rows and columns\n"); } dnew->dtype = rm->dtype; for (i = dnew->nrows; i--; ) for (j = dnew->ncols; j--; ) memcpy(rmx_lval(dnew,i,j), rmx_lval(rm,i,j), sizeof(double)*dnew->ncomp); return(dnew); } /* Multiply (concatenate) two matrices and allocate the result */ RMATRIX * rmx_multiply(const RMATRIX *m1, const RMATRIX *m2) { RMATRIX *mres; int i, j, k, h; if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows)) return(NULL); mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp); if (!mres) return(NULL); i = rmx_newtype(m1->dtype, m2->dtype); if (i) mres->dtype = i; else rmx_addinfo(mres, rmx_mismatch_warn); for (i = mres->nrows; i--; ) for (j = mres->ncols; j--; ) for (k = mres->ncomp; k--; ) { double d = 0; for (h = m1->ncols; h--; ) d += rmx_lval(m1,i,h)[k] * rmx_lval(m2,h,j)[k]; rmx_lval(mres,i,j)[k] = d; } return(mres); } /* Element-wise multiplication (or division) of m2 into m1 */ int rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide) { int zeroDivides = 0; int i, j, k; if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows)) return(0); if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp)) return(0); i = rmx_newtype(m1->dtype, m2->dtype); if (i) m1->dtype = i; else rmx_addinfo(m1, rmx_mismatch_warn); for (i = m1->nrows; i--; ) for (j = m1->ncols; j--; ) if (divide) { double d; if (m2->ncomp == 1) { d = rmx_lval(m2,i,j)[0]; if (d == 0) { ++zeroDivides; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] = 0; } else { d = 1./d; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= d; } } else for (k = m1->ncomp; k--; ) { d = rmx_lval(m2,i,j)[k]; if (d == 0) { ++zeroDivides; rmx_lval(m1,i,j)[k] = 0; } else rmx_lval(m1,i,j)[k] /= d; } } else { if (m2->ncomp == 1) { const double d = rmx_lval(m2,i,j)[0]; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= d; } else for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= rmx_lval(m2,i,j)[k]; } if (zeroDivides) { rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n"); errno = ERANGE; } return(1); } /* Sum second matrix into first, applying scale factor beforehand */ int rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[]) { double *mysf = NULL; int i, j, k; if (!msum | !madd || (msum->nrows != madd->nrows) | (msum->ncols != madd->ncols) | (msum->ncomp != madd->ncomp)) return(0); if (!sf) { mysf = (double *)malloc(sizeof(double)*msum->ncomp); if (!mysf) return(0); for (k = msum->ncomp; k--; ) mysf[k] = 1; sf = mysf; } i = rmx_newtype(msum->dtype, madd->dtype); if (i) msum->dtype = i; else rmx_addinfo(msum, rmx_mismatch_warn); for (i = msum->nrows; i--; ) for (j = msum->ncols; j--; ) { const double *da = rmx_lval(madd,i,j); double *ds = rmx_lval(msum,i,j); for (k = msum->ncomp; k--; ) ds[k] += sf[k] * da[k]; } if (mysf) free(mysf); return(1); } /* Scale the given matrix by the indicated scalar component vector */ int rmx_scale(RMATRIX *rm, const double sf[]) { int i, j, k; if (!rm | !sf) return(0); for (i = rm->nrows; i--; ) for (j = rm->ncols; j--; ) { double *dp = rmx_lval(rm,i,j); for (k = rm->ncomp; k--; ) dp[k] *= sf[k]; } if (rm->info) rmx_addinfo(rm, "Applied scalar\n"); return(1); } /* Allocate new matrix and apply component transformation */ RMATRIX * rmx_transform(const RMATRIX *msrc, int n, const double cmat[]) { int i, j, ks, kd; RMATRIX *dnew; if (!msrc | (n <= 0) | !cmat) return(NULL); dnew = rmx_alloc(msrc->nrows, msrc->ncols, n); if (!dnew) return(NULL); if (msrc->info) { char buf[128]; sprintf(buf, "Applied %dx%d component transform\n", dnew->ncomp, msrc->ncomp); rmx_addinfo(dnew, msrc->info); rmx_addinfo(dnew, buf); } dnew->dtype = msrc->dtype; for (i = dnew->nrows; i--; ) for (j = dnew->ncols; j--; ) { const double *ds = rmx_lval(msrc,i,j); for (kd = dnew->ncomp; kd--; ) { double d = 0; for (ks = msrc->ncomp; ks--; ) d += cmat[kd*msrc->ncomp + ks] * ds[ks]; rmx_lval(dnew,i,j)[kd] = d; } } return(dnew); } /* Convert a color matrix to newly allocated RMATRIX buffer */ RMATRIX * rmx_from_cmatrix(const CMATRIX *cm) { int i, j; RMATRIX *dnew; if (!cm) return(NULL); dnew = rmx_alloc(cm->nrows, cm->ncols, 3); if (!dnew) return(NULL); dnew->dtype = DTfloat; for (i = dnew->nrows; i--; ) for (j = dnew->ncols; j--; ) { const COLORV *cv = cm_lval(cm,i,j); double *dp = rmx_lval(dnew,i,j); dp[0] = cv[0]; dp[1] = cv[1]; dp[2] = cv[2]; } return(dnew); } /* Convert general matrix to newly allocated CMATRIX buffer */ CMATRIX * cm_from_rmatrix(const RMATRIX *rm) { int i, j; CMATRIX *cnew; if (!rm || !rm->mtx | ((rm->ncomp != 3) & (rm->ncomp != 1))) return(NULL); cnew = cm_alloc(rm->nrows, rm->ncols); if (!cnew) return(NULL); for (i = cnew->nrows; i--; ) for (j = cnew->ncols; j--; ) { const double *dp = rmx_lval(rm,i,j); COLORV *cv = cm_lval(cnew,i,j); if (rm->ncomp == 1) setcolor(cv, dp[0], dp[0], dp[0]); else setcolor(cv, dp[0], dp[1], dp[2]); } return(cnew); }