ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.53
Committed: Sat Mar 5 01:45:21 2022 UTC (2 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.52: +65 -52 lines
Log Message:
refactor(rmtxop): Changed matrix array access macros

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.52 2022/03/04 17:17:28 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15 #if !defined(_WIN32) && !defined(_WIN64)
16 #include <sys/mman.h>
17 #endif
18
19 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 #define array_size(rm) (sizeof(double)*(rm)->nrows*(rm)->ncols*(rm)->ncomp)
22 #define mapped_size(rm) ((char *)(rm)->mtx + array_size(rm) - (char *)(rm)->mapped)
23
24 /* Initialize a RMATRIX struct but don't allocate array space */
25 RMATRIX *
26 rmx_new(int nr, int nc, int n)
27 {
28 RMATRIX *dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX));
29
30 if (dnew) {
31 dnew->dtype = DTdouble;
32 dnew->nrows = nr;
33 dnew->ncols = nc;
34 dnew->ncomp = n;
35 }
36 return(dnew);
37 }
38
39 /* Prepare a RMATRIX for writing (allocate array if needed) */
40 int
41 rmx_prepare(RMATRIX *rm)
42 {
43 if (!rm) return(0);
44 if (rm->mtx)
45 return(1);
46 rm->mtx = (double *)malloc(array_size(rm));
47 return(rm->mtx != NULL);
48 }
49
50 /* Call rmx_new() and rmx_prepare() */
51 RMATRIX *
52 rmx_alloc(int nr, int nc, int n)
53 {
54 RMATRIX *dnew = rmx_new(nr, nc, n);
55
56 if (dnew && !rmx_prepare(dnew)) {
57 rmx_free(dnew);
58 dnew = NULL;
59 }
60 return(dnew);
61 }
62
63 /* Free a RMATRIX array */
64 void
65 rmx_free(RMATRIX *rm)
66 {
67 if (!rm) return;
68 if (rm->info)
69 free(rm->info);
70 #ifdef MAP_FILE
71 if (rm->mapped)
72 munmap(rm->mapped, mapped_size(rm));
73 else
74 #endif
75 free(rm->mtx);
76 free(rm);
77 }
78
79 /* Resolve data type based on two input types (returns 0 for mismatch) */
80 int
81 rmx_newtype(int dtyp1, int dtyp2)
82 {
83 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
84 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
85 && dtyp1 != dtyp2)
86 return(0);
87 if (dtyp1 < dtyp2)
88 return(dtyp1);
89 return(dtyp2);
90 }
91
92 /* Append header information associated with matrix data */
93 int
94 rmx_addinfo(RMATRIX *rm, const char *info)
95 {
96 int oldlen = 0;
97
98 if (!rm || !info || !*info)
99 return(0);
100 if (!rm->info) {
101 rm->info = (char *)malloc(strlen(info)+1);
102 if (rm->info) rm->info[0] = '\0';
103 } else {
104 oldlen = strlen(rm->info);
105 rm->info = (char *)realloc(rm->info,
106 oldlen+strlen(info)+1);
107 }
108 if (!rm->info)
109 return(0);
110 strcpy(rm->info+oldlen, info);
111 return(1);
112 }
113
114 static int
115 get_dminfo(char *s, void *p)
116 {
117 RMATRIX *ip = (RMATRIX *)p;
118 char fmt[MAXFMTLEN];
119 int i;
120
121 if (headidval(fmt, s))
122 return(0);
123 if (!strncmp(s, "NCOMP=", 6)) {
124 ip->ncomp = atoi(s+6);
125 return(0);
126 }
127 if (!strncmp(s, "NROWS=", 6)) {
128 ip->nrows = atoi(s+6);
129 return(0);
130 }
131 if (!strncmp(s, "NCOLS=", 6)) {
132 ip->ncols = atoi(s+6);
133 return(0);
134 }
135 if ((i = isbigendian(s)) >= 0) {
136 ip->swapin = (nativebigendian() != i);
137 return(0);
138 }
139 if (isexpos(s)) {
140 float f = exposval(s);
141 scalecolor(ip->cexp, f);
142 return(0);
143 }
144 if (iscolcor(s)) {
145 COLOR ctmp;
146 colcorval(ctmp, s);
147 multcolor(ip->cexp, ctmp);
148 return(0);
149 }
150 if (!formatval(fmt, s)) {
151 rmx_addinfo(ip, s);
152 return(0);
153 } /* else check format */
154 for (i = 1; i < DTend; i++)
155 if (!strcmp(fmt, cm_fmt_id[i])) {
156 ip->dtype = i;
157 return(0);
158 }
159 return(-1);
160 }
161
162 static int
163 rmx_load_ascii(RMATRIX *rm, FILE *fp)
164 {
165 int i, j, k;
166
167 if (!rmx_prepare(rm))
168 return(0);
169 for (i = 0; i < rm->nrows; i++)
170 for (j = 0; j < rm->ncols; j++) {
171 double *dp = rmx_lval(rm,i,j);
172 for (k = 0; k < rm->ncomp; k++)
173 if (fscanf(fp, "%lf", &dp[k]) != 1)
174 return(0);
175 }
176 return(1);
177 }
178
179 static int
180 rmx_load_float(RMATRIX *rm, FILE *fp)
181 {
182 int i, j, k;
183 float val[100];
184
185 if (rm->ncomp > 100) {
186 fputs("Unsupported # components in rmx_load_float()\n", stderr);
187 exit(1);
188 }
189 if (!rmx_prepare(rm))
190 return(0);
191 for (i = 0; i < rm->nrows; i++)
192 for (j = 0; j < rm->ncols; j++) {
193 double *dp = rmx_lval(rm,i,j);
194 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
195 return(0);
196 if (rm->swapin)
197 swap32((char *)val, rm->ncomp);
198 for (k = rm->ncomp; k--; )
199 dp[k] = val[k];
200 }
201 return(1);
202 }
203
204 static int
205 rmx_load_double(RMATRIX *rm, FILE *fp)
206 {
207 int i;
208 #ifdef MAP_FILE
209 long pos; /* map memory to file if possible */
210 if (!rm->swapin && array_size(rm) >= 1L<<20 &&
211 (pos = ftell(fp)) >= 0 && !(pos % sizeof(double))) {
212 rm->mapped = mmap(NULL, array_size(rm)+pos, PROT_READ|PROT_WRITE,
213 MAP_PRIVATE, fileno(fp), 0);
214 if (rm->mapped != MAP_FAILED) {
215 rm->mtx = (double *)rm->mapped + pos/sizeof(double);
216 return(1);
217 }
218 rm->mapped = NULL;
219 }
220 #endif
221 if (!rmx_prepare(rm))
222 return(0);
223 for (i = 0; i < rm->nrows; i++) {
224 if (getbinary(rmx_lval(rm,i,0), sizeof(double)*rm->ncomp,
225 rm->ncols, fp) != rm->ncols)
226 return(0);
227 if (rm->swapin)
228 swap64((char *)rmx_lval(rm,i,0), rm->ncols*rm->ncomp);
229 }
230 return(1);
231 }
232
233 static int
234 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
235 {
236 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
237 int i, j;
238
239 if (!scan)
240 return(0);
241 if (!rmx_prepare(rm))
242 return(0);
243 for (i = 0; i < rm->nrows; i++) {
244 double *dp = rmx_lval(rm,i,j);
245 if (freadscan(scan, rm->ncols, fp) < 0) {
246 free(scan);
247 return(0);
248 }
249 for (j = 0; j < rm->ncols; j++, dp += 3) {
250 dp[0] = colval(scan[j],RED);
251 dp[1] = colval(scan[j],GRN);
252 dp[2] = colval(scan[j],BLU);
253 }
254 }
255 free(scan);
256 return(1);
257 }
258
259 /* Load matrix from supported file type */
260 RMATRIX *
261 rmx_load(const char *inspec, RMPref rmp)
262 {
263 FILE *fp;
264 RMATRIX *dnew;
265
266 if (!inspec)
267 inspec = stdin_name;
268 else if (!*inspec)
269 return(NULL);
270 if (inspec == stdin_name) { /* reading from stdin? */
271 fp = stdin;
272 } else if (inspec[0] == '!') {
273 if (!(fp = popen(inspec+1, "r")))
274 return(NULL);
275 } else {
276 const char *sp = inspec; /* check suffix */
277 while (*sp)
278 ++sp;
279 while (sp > inspec && sp[-1] != '.')
280 --sp;
281 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
282 CMATRIX *cm = rmp==RMPtrans ? cm_loadBTDF(inspec) :
283 cm_loadBRDF(inspec, rmp==RMPreflB) ;
284 if (!cm)
285 return(NULL);
286 dnew = rmx_from_cmatrix(cm);
287 cm_free(cm);
288 dnew->dtype = DTascii;
289 return(dnew);
290 }
291 /* else open it ourselves */
292 if (!(fp = fopen(inspec, "r")))
293 return(NULL);
294 }
295 SET_FILE_BINARY(fp);
296 #ifdef getc_unlocked
297 flockfile(fp);
298 #endif
299 if (!(dnew = rmx_new(0,0,3))) {
300 fclose(fp);
301 return(NULL);
302 }
303 dnew->dtype = DTascii; /* assumed w/o FORMAT */
304 dnew->cexp[0] = dnew->cexp[1] = dnew->cexp[2] = 1.f;
305 if (getheader(fp, get_dminfo, dnew) < 0) {
306 fclose(fp);
307 return(NULL);
308 }
309 if ((dnew->nrows <= 0) | (dnew->ncols <= 0)) {
310 if (!fscnresolu(&dnew->ncols, &dnew->nrows, fp)) {
311 fclose(fp);
312 return(NULL);
313 }
314 if ((dnew->dtype == DTrgbe) | (dnew->dtype == DTxyze) &&
315 dnew->ncomp != 3) {
316 fclose(fp);
317 return(NULL);
318 }
319 }
320 switch (dnew->dtype) {
321 case DTascii:
322 SET_FILE_TEXT(fp);
323 if (!rmx_load_ascii(dnew, fp))
324 goto loaderr;
325 dnew->dtype = DTascii; /* should leave double? */
326 break;
327 case DTfloat:
328 if (!rmx_load_float(dnew, fp))
329 goto loaderr;
330 dnew->dtype = DTfloat;
331 break;
332 case DTdouble:
333 if (!rmx_load_double(dnew, fp))
334 goto loaderr;
335 dnew->dtype = DTdouble;
336 break;
337 case DTrgbe:
338 case DTxyze:
339 if (!rmx_load_rgbe(dnew, fp))
340 goto loaderr;
341 /* undo exposure? */
342 if ((dnew->cexp[0] != 1.f) | (dnew->cexp[1] != 1.f) |
343 (dnew->cexp[2] != 1.f)) {
344 double cmlt[3];
345 cmlt[0] = 1./dnew->cexp[0];
346 cmlt[1] = 1./dnew->cexp[1];
347 cmlt[2] = 1./dnew->cexp[2];
348 rmx_scale(dnew, cmlt);
349 }
350 dnew->swapin = 0;
351 break;
352 default:
353 goto loaderr;
354 }
355 if (fp != stdin) {
356 if (inspec[0] == '!')
357 pclose(fp);
358 else
359 fclose(fp);
360 }
361 #ifdef getc_unlocked
362 else
363 funlockfile(fp);
364 #endif
365 return(dnew);
366 loaderr: /* should report error? */
367 if (inspec[0] == '!')
368 pclose(fp);
369 else
370 fclose(fp);
371 rmx_free(dnew);
372 return(NULL);
373 }
374
375 static int
376 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
377 {
378 const char *fmt = (rm->dtype == DTfloat) ? " %.7e" :
379 (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" :
380 " %.15e" ;
381 int i, j, k;
382
383 for (i = 0; i < rm->nrows; i++) {
384 for (j = 0; j < rm->ncols; j++) {
385 const double *dp = rmx_lval(rm,i,j);
386 for (k = 0; k < rm->ncomp; k++)
387 fprintf(fp, fmt, dp[k]);
388 fputc('\t', fp);
389 }
390 fputc('\n', fp);
391 }
392 return(1);
393 }
394
395 static int
396 rmx_write_float(const RMATRIX *rm, FILE *fp)
397 {
398 int i, j, k;
399 float val[100];
400
401 if (rm->ncomp > 100) {
402 fputs("Unsupported # components in rmx_write_float()\n", stderr);
403 exit(1);
404 }
405 for (i = 0; i < rm->nrows; i++)
406 for (j = 0; j < rm->ncols; j++) {
407 const double *dp = rmx_lval(rm,i,j);
408 for (k = rm->ncomp; k--; )
409 val[k] = (float)dp[k];
410 if (putbinary(val, sizeof(float), rm->ncomp, fp) != rm->ncomp)
411 return(0);
412 }
413 return(1);
414 }
415
416 static int
417 rmx_write_double(const RMATRIX *rm, FILE *fp)
418 {
419 int i;
420
421 for (i = 0; i < rm->nrows; i++)
422 if (putbinary(rmx_lval(rm,i,0), sizeof(double)*rm->ncomp,
423 rm->ncols, fp) != rm->ncols)
424 return(0);
425 return(1);
426 }
427
428 static int
429 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
430 {
431 COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols);
432 int i, j;
433
434 if (!scan)
435 return(0);
436 for (i = 0; i < rm->nrows; i++) {
437 for (j = rm->ncols; j--; ) {
438 const double *dp = rmx_lval(rm,i,j);
439 setcolr(scan[j], dp[0], dp[1], dp[2]);
440 }
441 if (fwritecolrs(scan, rm->ncols, fp) < 0) {
442 free(scan);
443 return(0);
444 }
445 }
446 free(scan);
447 return(1);
448 }
449
450 /* Check if CIE XYZ primaries were specified */
451 static int
452 findCIEprims(const char *info)
453 {
454 RGBPRIMS prims;
455
456 if (!info)
457 return(0);
458 info = strstr(info, PRIMARYSTR);
459 if (!info || !primsval(prims, info))
460 return(0);
461
462 return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) &&
463 (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) &&
464 (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01));
465 }
466
467 /* Write matrix to file type indicated by dtype */
468 int
469 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
470 {
471 int ok = 1;
472
473 if (!rm | !fp || !rm->mtx)
474 return(0);
475 #ifdef getc_unlocked
476 flockfile(fp);
477 #endif
478 /* complete header */
479 if (rm->info)
480 fputs(rm->info, fp);
481 if (dtype == DTfromHeader)
482 dtype = rm->dtype;
483 else if (dtype == DTrgbe && (rm->dtype == DTxyze ||
484 findCIEprims(rm->info)))
485 dtype = DTxyze;
486 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
487 dtype = DTrgbe;
488 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
489 fprintf(fp, "NROWS=%d\n", rm->nrows);
490 fprintf(fp, "NCOLS=%d\n", rm->ncols);
491 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
492 } else if (rm->ncomp != 3) { /* wrong # components? */
493 CMATRIX *cm; /* convert & write */
494 if (rm->ncomp != 1) /* only convert grayscale */
495 return(0);
496 if (!(cm = cm_from_rmatrix(rm)))
497 return(0);
498 fputformat(cm_fmt_id[dtype], fp);
499 fputc('\n', fp);
500 ok = cm_write(cm, dtype, fp);
501 cm_free(cm);
502 return(ok);
503 }
504 if ((dtype == DTfloat) | (dtype == DTdouble))
505 fputendian(fp); /* important to record */
506 fputformat(cm_fmt_id[dtype], fp);
507 fputc('\n', fp);
508 switch (dtype) { /* write data */
509 case DTascii:
510 ok = rmx_write_ascii(rm, fp);
511 break;
512 case DTfloat:
513 ok = rmx_write_float(rm, fp);
514 break;
515 case DTdouble:
516 ok = rmx_write_double(rm, fp);
517 break;
518 case DTrgbe:
519 case DTxyze:
520 fprtresolu(rm->ncols, rm->nrows, fp);
521 ok = rmx_write_rgbe(rm, fp);
522 break;
523 default:
524 return(0);
525 }
526 ok &= (fflush(fp) == 0);
527 #ifdef getc_unlocked
528 funlockfile(fp);
529 #endif
530 return(ok);
531 }
532
533 /* Allocate and assign square identity matrix with n components */
534 RMATRIX *
535 rmx_identity(const int dim, const int n)
536 {
537 RMATRIX *rid = rmx_alloc(dim, dim, n);
538 int i, k;
539
540 if (!rid)
541 return(NULL);
542 memset(rid->mtx, 0, array_size(rid));
543 for (i = dim; i--; ) {
544 double *dp = rmx_lval(rid,i,i);
545 for (k = n; k--; )
546 dp[k] = 1.;
547 }
548 return(rid);
549 }
550
551 /* Duplicate the given matrix */
552 RMATRIX *
553 rmx_copy(const RMATRIX *rm)
554 {
555 RMATRIX *dnew;
556
557 if (!rm)
558 return(NULL);
559 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
560 if (!dnew)
561 return(NULL);
562 rmx_addinfo(dnew, rm->info);
563 dnew->dtype = rm->dtype;
564 memcpy(dnew->mtx, rm->mtx, array_size(dnew));
565 return(dnew);
566 }
567
568 /* Allocate and assign transposed matrix */
569 RMATRIX *
570 rmx_transpose(const RMATRIX *rm)
571 {
572 RMATRIX *dnew;
573 int i, j, k;
574
575 if (!rm)
576 return(0);
577 if ((rm->nrows == 1) | (rm->ncols == 1)) {
578 dnew = rmx_copy(rm);
579 if (!dnew)
580 return(NULL);
581 dnew->nrows = rm->ncols;
582 dnew->ncols = rm->nrows;
583 return(dnew);
584 }
585 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
586 if (!dnew)
587 return(NULL);
588 if (rm->info) {
589 rmx_addinfo(dnew, rm->info);
590 rmx_addinfo(dnew, "Transposed rows and columns\n");
591 }
592 dnew->dtype = rm->dtype;
593 for (i = dnew->nrows; i--; )
594 for (j = dnew->ncols; j--; )
595 memcpy(rmx_lval(dnew,i,j), rmx_lval(rm,i,j),
596 sizeof(double)*dnew->ncomp);
597 return(dnew);
598 }
599
600 /* Multiply (concatenate) two matrices and allocate the result */
601 RMATRIX *
602 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
603 {
604 RMATRIX *mres;
605 int i, j, k, h;
606
607 if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
608 return(NULL);
609 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
610 if (!mres)
611 return(NULL);
612 i = rmx_newtype(m1->dtype, m2->dtype);
613 if (i)
614 mres->dtype = i;
615 else
616 rmx_addinfo(mres, rmx_mismatch_warn);
617 for (i = mres->nrows; i--; )
618 for (j = mres->ncols; j--; )
619 for (k = mres->ncomp; k--; ) {
620 double d = 0;
621 for (h = m1->ncols; h--; )
622 d += rmx_lval(m1,i,h)[k] * rmx_lval(m2,h,j)[k];
623 rmx_lval(mres,i,j)[k] = d;
624 }
625 return(mres);
626 }
627
628 /* Element-wise multiplication (or division) of m2 into m1 */
629 int
630 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
631 {
632 int zeroDivides = 0;
633 int i, j, k;
634
635 if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
636 return(0);
637 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
638 return(0);
639 i = rmx_newtype(m1->dtype, m2->dtype);
640 if (i)
641 m1->dtype = i;
642 else
643 rmx_addinfo(m1, rmx_mismatch_warn);
644 for (i = m1->nrows; i--; )
645 for (j = m1->ncols; j--; )
646 if (divide) {
647 double d;
648 if (m2->ncomp == 1) {
649 d = rmx_lval(m2,i,j)[0];
650 if (d == 0) {
651 ++zeroDivides;
652 for (k = m1->ncomp; k--; )
653 rmx_lval(m1,i,j)[k] = 0;
654 } else {
655 d = 1./d;
656 for (k = m1->ncomp; k--; )
657 rmx_lval(m1,i,j)[k] *= d;
658 }
659 } else
660 for (k = m1->ncomp; k--; ) {
661 d = rmx_lval(m2,i,j)[k];
662 if (d == 0) {
663 ++zeroDivides;
664 rmx_lval(m1,i,j)[k] = 0;
665 } else
666 rmx_lval(m1,i,j)[k] /= d;
667 }
668 } else {
669 if (m2->ncomp == 1) {
670 const double d = rmx_lval(m2,i,j)[0];
671 for (k = m1->ncomp; k--; )
672 rmx_lval(m1,i,j)[k] *= d;
673 } else
674 for (k = m1->ncomp; k--; )
675 rmx_lval(m1,i,j)[k] *= rmx_lval(m2,i,j)[k];
676 }
677 if (zeroDivides) {
678 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
679 errno = ERANGE;
680 }
681 return(1);
682 }
683
684 /* Sum second matrix into first, applying scale factor beforehand */
685 int
686 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
687 {
688 double *mysf = NULL;
689 int i, j, k;
690
691 if (!msum | !madd ||
692 (msum->nrows != madd->nrows) |
693 (msum->ncols != madd->ncols) |
694 (msum->ncomp != madd->ncomp))
695 return(0);
696 if (!sf) {
697 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
698 if (!mysf)
699 return(0);
700 for (k = msum->ncomp; k--; )
701 mysf[k] = 1;
702 sf = mysf;
703 }
704 i = rmx_newtype(msum->dtype, madd->dtype);
705 if (i)
706 msum->dtype = i;
707 else
708 rmx_addinfo(msum, rmx_mismatch_warn);
709 for (i = msum->nrows; i--; )
710 for (j = msum->ncols; j--; ) {
711 const double *da = rmx_lval(madd,i,j);
712 double *ds = rmx_lval(msum,i,j);
713 for (k = msum->ncomp; k--; )
714 ds[k] += sf[k] * da[k];
715 }
716 if (mysf)
717 free(mysf);
718 return(1);
719 }
720
721 /* Scale the given matrix by the indicated scalar component vector */
722 int
723 rmx_scale(RMATRIX *rm, const double sf[])
724 {
725 int i, j, k;
726
727 if (!rm | !sf)
728 return(0);
729 for (i = rm->nrows; i--; )
730 for (j = rm->ncols; j--; ) {
731 double *dp = rmx_lval(rm,i,j);
732 for (k = rm->ncomp; k--; )
733 dp[k] *= sf[k];
734 }
735 if (rm->info)
736 rmx_addinfo(rm, "Applied scalar\n");
737 return(1);
738 }
739
740 /* Allocate new matrix and apply component transformation */
741 RMATRIX *
742 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
743 {
744 int i, j, ks, kd;
745 RMATRIX *dnew;
746
747 if (!msrc | (n <= 0) | !cmat)
748 return(NULL);
749 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
750 if (!dnew)
751 return(NULL);
752 if (msrc->info) {
753 char buf[128];
754 sprintf(buf, "Applied %dx%d component transform\n",
755 dnew->ncomp, msrc->ncomp);
756 rmx_addinfo(dnew, msrc->info);
757 rmx_addinfo(dnew, buf);
758 }
759 dnew->dtype = msrc->dtype;
760 for (i = dnew->nrows; i--; )
761 for (j = dnew->ncols; j--; ) {
762 const double *ds = rmx_lval(msrc,i,j);
763 for (kd = dnew->ncomp; kd--; ) {
764 double d = 0;
765 for (ks = msrc->ncomp; ks--; )
766 d += cmat[kd*msrc->ncomp + ks] * ds[ks];
767 rmx_lval(dnew,i,j)[kd] = d;
768 }
769 }
770 return(dnew);
771 }
772
773 /* Convert a color matrix to newly allocated RMATRIX buffer */
774 RMATRIX *
775 rmx_from_cmatrix(const CMATRIX *cm)
776 {
777 int i, j;
778 RMATRIX *dnew;
779
780 if (!cm)
781 return(NULL);
782 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
783 if (!dnew)
784 return(NULL);
785 dnew->dtype = DTfloat;
786 for (i = dnew->nrows; i--; )
787 for (j = dnew->ncols; j--; ) {
788 const COLORV *cv = cm_lval(cm,i,j);
789 double *dp = rmx_lval(dnew,i,j);
790 dp[0] = cv[0];
791 dp[1] = cv[1];
792 dp[2] = cv[2];
793 }
794 return(dnew);
795 }
796
797 /* Convert general matrix to newly allocated CMATRIX buffer */
798 CMATRIX *
799 cm_from_rmatrix(const RMATRIX *rm)
800 {
801 int i, j;
802 CMATRIX *cnew;
803
804 if (!rm || !rm->mtx | ((rm->ncomp != 3) & (rm->ncomp != 1)))
805 return(NULL);
806 cnew = cm_alloc(rm->nrows, rm->ncols);
807 if (!cnew)
808 return(NULL);
809 for (i = cnew->nrows; i--; )
810 for (j = cnew->ncols; j--; ) {
811 const double *dp = rmx_lval(rm,i,j);
812 COLORV *cv = cm_lval(cnew,i,j);
813 if (rm->ncomp == 1)
814 setcolor(cv, dp[0], dp[0], dp[0]);
815 else
816 setcolor(cv, dp[0], dp[1], dp[2]);
817 }
818 return(cnew);
819 }