ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.50
Committed: Fri Mar 4 01:27:12 2022 UTC (2 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.49: +95 -53 lines
Log Message:
perf(rmtxop): Added memory-mapping for double matrices

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.49 2022/03/03 03:55:13 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15 #if !defined(_WIN32) && !defined(_WIN64)
16 #include <sys/mman.h>
17 #endif
18
19 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 #define array_size(rm) (sizeof(double)*(rm)->nrows*(rm)->ncols*(rm)->ncomp)
22 #define mapped_size(rm) ((char *)(rm)->mtx + array_size(rm) - (char *)(rm)->mapped)
23
24 /* Initialize a RMATRIX struct but don't allocate array space */
25 RMATRIX *
26 rmx_new(int nr, int nc, int n)
27 {
28 RMATRIX *dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX));
29
30 if (dnew) {
31 dnew->dtype = DTdouble;
32 dnew->nrows = nr;
33 dnew->ncols = nc;
34 dnew->ncomp = n;
35 }
36 return(dnew);
37 }
38
39 /* Prepare a RMATRIX for writing (allocate array if needed) */
40 int
41 rmx_prepare(RMATRIX *rm)
42 {
43 if (!rm) return(0);
44 if (rm->mtx)
45 return(1);
46 rm->mtx = (double *)malloc(array_size(rm));
47 return(rm->mtx != NULL);
48 }
49
50 /* Call rmx_new() and rmx_prepare() */
51 RMATRIX *
52 rmx_alloc(int nr, int nc, int n)
53 {
54 RMATRIX *dnew = rmx_new(nr, nc, n);
55
56 if (dnew && !rmx_prepare(dnew)) {
57 rmx_free(dnew);
58 dnew = NULL;
59 }
60 return(dnew);
61 }
62
63 /* Free a RMATRIX array */
64 void
65 rmx_free(RMATRIX *rm)
66 {
67 if (!rm) return;
68 if (rm->info)
69 free(rm->info);
70 #ifdef MAP_FILE
71 if (rm->mapped)
72 munmap(rm->mapped, mapped_size(rm));
73 else
74 #endif
75 free(rm->mtx);
76 free(rm);
77 }
78
79 /* Resolve data type based on two input types (returns 0 for mismatch) */
80 int
81 rmx_newtype(int dtyp1, int dtyp2)
82 {
83 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
84 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
85 && dtyp1 != dtyp2)
86 return(0);
87 if (dtyp1 < dtyp2)
88 return(dtyp1);
89 return(dtyp2);
90 }
91
92 /* Append header information associated with matrix data */
93 int
94 rmx_addinfo(RMATRIX *rm, const char *info)
95 {
96 int oldlen = 0;
97
98 if (!rm || !info || !*info)
99 return(0);
100 if (!rm->info) {
101 rm->info = (char *)malloc(strlen(info)+1);
102 if (rm->info) rm->info[0] = '\0';
103 } else {
104 oldlen = strlen(rm->info);
105 rm->info = (char *)realloc(rm->info,
106 oldlen+strlen(info)+1);
107 }
108 if (!rm->info)
109 return(0);
110 strcpy(rm->info+oldlen, info);
111 return(1);
112 }
113
114 static int
115 get_dminfo(char *s, void *p)
116 {
117 RMATRIX *ip = (RMATRIX *)p;
118 char fmt[MAXFMTLEN];
119 int i;
120
121 if (headidval(fmt, s))
122 return(0);
123 if (!strncmp(s, "NCOMP=", 6)) {
124 ip->ncomp = atoi(s+6);
125 return(0);
126 }
127 if (!strncmp(s, "NROWS=", 6)) {
128 ip->nrows = atoi(s+6);
129 return(0);
130 }
131 if (!strncmp(s, "NCOLS=", 6)) {
132 ip->ncols = atoi(s+6);
133 return(0);
134 }
135 if ((i = isbigendian(s)) >= 0) {
136 ip->swapin = (nativebigendian() != i);
137 return(0);
138 }
139 if (isexpos(s)) {
140 double d = exposval(s);
141 scalecolor(ip->cexp, d);
142 return(0);
143 }
144 if (iscolcor(s)) {
145 COLOR ctmp;
146 colcorval(ctmp, s);
147 multcolor(ip->cexp, ctmp);
148 return(0);
149 }
150 if (!formatval(fmt, s)) {
151 rmx_addinfo(ip, s);
152 return(0);
153 } /* else check format */
154 for (i = 1; i < DTend; i++)
155 if (!strcmp(fmt, cm_fmt_id[i])) {
156 ip->dtype = i;
157 return(0);
158 }
159 return(-1);
160 }
161
162 static int
163 rmx_load_ascii(RMATRIX *rm, FILE *fp)
164 {
165 int i, j, k;
166
167 if (!rmx_prepare(rm))
168 return(0);
169 for (i = 0; i < rm->nrows; i++)
170 for (j = 0; j < rm->ncols; j++)
171 for (k = 0; k < rm->ncomp; k++)
172 if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
173 return(0);
174 return(1);
175 }
176
177 static int
178 rmx_load_float(RMATRIX *rm, FILE *fp)
179 {
180 int i, j, k;
181 float val[100];
182
183 if (rm->ncomp > 100) {
184 fputs("Unsupported # components in rmx_load_float()\n", stderr);
185 exit(1);
186 }
187 if (!rmx_prepare(rm))
188 return(0);
189 for (i = 0; i < rm->nrows; i++)
190 for (j = 0; j < rm->ncols; j++) {
191 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
192 return(0);
193 if (rm->swapin)
194 swap32((char *)val, rm->ncomp);
195 for (k = rm->ncomp; k--; )
196 rmx_lval(rm,i,j,k) = val[k];
197 }
198 return(1);
199 }
200
201 static int
202 rmx_load_double(RMATRIX *rm, FILE *fp)
203 {
204 int i;
205 #ifdef MAP_FILE
206 long pos; /* map memory to file if possible */
207 if (!rm->swapin && (pos = ftell(fp)) >= 0 && !(pos % sizeof(double))) {
208 rm->mapped = mmap(NULL, array_size(rm)+pos, PROT_READ|PROT_WRITE,
209 MAP_PRIVATE, fileno(fp), 0);
210 if (rm->mapped != MAP_FAILED) {
211 rm->mtx = (double *)rm->mapped + pos/sizeof(double);
212 return(1);
213 }
214 rm->mapped = NULL;
215 }
216 #endif
217 if (!rmx_prepare(rm))
218 return(0);
219 for (i = 0; i < rm->nrows; i++) {
220 if (getbinary(&rmx_lval(rm,i,0,0), sizeof(double)*rm->ncomp,
221 rm->ncols, fp) != rm->ncols)
222 return(0);
223 if (rm->swapin)
224 swap64((char *)&rmx_lval(rm,i,0,0), rm->ncols*rm->ncomp);
225 }
226 return(1);
227 }
228
229 static int
230 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
231 {
232 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
233 int i, j;
234
235 if (!scan)
236 return(0);
237 if (!rmx_prepare(rm))
238 return(0);
239 for (i = 0; i < rm->nrows; i++) {
240 if (freadscan(scan, rm->ncols, fp) < 0) {
241 free(scan);
242 return(0);
243 }
244 for (j = rm->ncols; j--; ) {
245 rmx_lval(rm,i,j,0) = colval(scan[j],RED);
246 rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
247 rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
248 }
249 }
250 free(scan);
251 return(1);
252 }
253
254 /* Load matrix from supported file type */
255 RMATRIX *
256 rmx_load(const char *inspec, RMPref rmp)
257 {
258 FILE *fp;
259 RMATRIX *dnew;
260
261 if (!inspec)
262 inspec = stdin_name;
263 else if (!*inspec)
264 return(NULL);
265 if (inspec == stdin_name) { /* reading from stdin? */
266 fp = stdin;
267 } else if (inspec[0] == '!') {
268 if (!(fp = popen(inspec+1, "r")))
269 return(NULL);
270 } else {
271 const char *sp = inspec; /* check suffix */
272 while (*sp)
273 ++sp;
274 while (sp > inspec && sp[-1] != '.')
275 --sp;
276 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
277 CMATRIX *cm = rmp==RMPtrans ? cm_loadBTDF(inspec) :
278 cm_loadBRDF(inspec, rmp==RMPreflB) ;
279 if (!cm)
280 return(NULL);
281 dnew = rmx_from_cmatrix(cm);
282 cm_free(cm);
283 dnew->dtype = DTascii;
284 return(dnew);
285 }
286 /* else open it ourselves */
287 if (!(fp = fopen(inspec, "r")))
288 return(NULL);
289 }
290 SET_FILE_BINARY(fp);
291 #ifdef getc_unlocked
292 flockfile(fp);
293 #endif
294 if (!(dnew = rmx_new(0,0,3))) {
295 fclose(fp);
296 return(NULL);
297 }
298 dnew->dtype = DTascii; /* assumed w/o FORMAT */
299 dnew->cexp[0] = dnew->cexp[1] = dnew->cexp[2] = 1.f;
300 if (getheader(fp, get_dminfo, dnew) < 0) {
301 fclose(fp);
302 return(NULL);
303 }
304 if ((dnew->nrows <= 0) | (dnew->ncols <= 0)) {
305 if (!fscnresolu(&dnew->ncols, &dnew->nrows, fp)) {
306 fclose(fp);
307 return(NULL);
308 }
309 if ((dnew->dtype == DTrgbe) | (dnew->dtype == DTxyze) &&
310 dnew->ncomp != 3) {
311 fclose(fp);
312 return(NULL);
313 }
314 }
315 switch (dnew->dtype) {
316 case DTascii:
317 SET_FILE_TEXT(fp);
318 if (!rmx_load_ascii(dnew, fp))
319 goto loaderr;
320 dnew->dtype = DTascii; /* should leave double? */
321 break;
322 case DTfloat:
323 if (!rmx_load_float(dnew, fp))
324 goto loaderr;
325 dnew->dtype = DTfloat;
326 break;
327 case DTdouble:
328 if (!rmx_load_double(dnew, fp))
329 goto loaderr;
330 dnew->dtype = DTdouble;
331 break;
332 case DTrgbe:
333 case DTxyze:
334 if (!rmx_load_rgbe(dnew, fp))
335 goto loaderr;
336 /* undo exposure? */
337 if ((dnew->cexp[0] != 1.f) | (dnew->cexp[1] != 1.f) |
338 (dnew->cexp[2] != 1.f)) {
339 double cmlt[3];
340 cmlt[0] = 1./dnew->cexp[0];
341 cmlt[1] = 1./dnew->cexp[1];
342 cmlt[2] = 1./dnew->cexp[2];
343 rmx_scale(dnew, cmlt);
344 }
345 dnew->swapin = 0;
346 break;
347 default:
348 goto loaderr;
349 }
350 if (fp != stdin) {
351 if (inspec[0] == '!')
352 pclose(fp);
353 else
354 fclose(fp);
355 }
356 #ifdef getc_unlocked
357 else
358 funlockfile(fp);
359 #endif
360 return(dnew);
361 loaderr: /* should report error? */
362 if (inspec[0] == '!')
363 pclose(fp);
364 else
365 fclose(fp);
366 rmx_free(dnew);
367 return(NULL);
368 }
369
370 static int
371 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
372 {
373 const char *fmt = (rm->dtype == DTfloat) ? " %.7e" :
374 (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" :
375 " %.15e" ;
376 int i, j, k;
377
378 for (i = 0; i < rm->nrows; i++) {
379 for (j = 0; j < rm->ncols; j++) {
380 for (k = 0; k < rm->ncomp; k++)
381 fprintf(fp, fmt, rmx_lval(rm,i,j,k));
382 fputc('\t', fp);
383 }
384 fputc('\n', fp);
385 }
386 return(1);
387 }
388
389 static int
390 rmx_write_float(const RMATRIX *rm, FILE *fp)
391 {
392 int i, j, k;
393 float val[100];
394
395 if (rm->ncomp > 100) {
396 fputs("Unsupported # components in rmx_write_float()\n", stderr);
397 exit(1);
398 }
399 for (i = 0; i < rm->nrows; i++)
400 for (j = 0; j < rm->ncols; j++) {
401 for (k = rm->ncomp; k--; )
402 val[k] = (float)rmx_lval(rm,i,j,k);
403 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
404 return(0);
405 }
406 return(1);
407 }
408
409 static int
410 rmx_write_double(const RMATRIX *rm, FILE *fp)
411 {
412 int i, j;
413
414 for (i = 0; i < rm->nrows; i++)
415 for (j = 0; j < rm->ncols; j++)
416 if (putbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
417 return(0);
418 return(1);
419 }
420
421 static int
422 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
423 {
424 COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols);
425 int i, j;
426
427 if (!scan)
428 return(0);
429 for (i = 0; i < rm->nrows; i++) {
430 for (j = rm->ncols; j--; )
431 setcolr(scan[j], rmx_lval(rm,i,j,0),
432 rmx_lval(rm,i,j,1),
433 rmx_lval(rm,i,j,2) );
434 if (fwritecolrs(scan, rm->ncols, fp) < 0) {
435 free(scan);
436 return(0);
437 }
438 }
439 free(scan);
440 return(1);
441 }
442
443 /* Check if CIE XYZ primaries were specified */
444 static int
445 findCIEprims(const char *info)
446 {
447 RGBPRIMS prims;
448
449 if (!info)
450 return(0);
451 info = strstr(info, PRIMARYSTR);
452 if (!info || !primsval(prims, info))
453 return(0);
454
455 return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) &&
456 (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) &&
457 (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01));
458 }
459
460 /* Write matrix to file type indicated by dtype */
461 int
462 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
463 {
464 RMATRIX *mydm = NULL;
465 int ok = 1;
466
467 if (!rm | !fp)
468 return(0);
469 #ifdef getc_unlocked
470 flockfile(fp);
471 #endif
472 /* complete header */
473 if (rm->info)
474 fputs(rm->info, fp);
475 if (dtype == DTfromHeader)
476 dtype = rm->dtype;
477 else if (dtype == DTrgbe && (rm->dtype == DTxyze ||
478 findCIEprims(rm->info)))
479 dtype = DTxyze;
480 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
481 dtype = DTrgbe;
482 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
483 fprintf(fp, "NROWS=%d\n", rm->nrows);
484 fprintf(fp, "NCOLS=%d\n", rm->ncols);
485 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
486 } else if (rm->ncomp != 3) { /* wrong # components? */
487 double cmtx[3];
488 if (rm->ncomp != 1) /* only convert grayscale */
489 return(0);
490 cmtx[0] = cmtx[1] = cmtx[2] = 1;
491 mydm = rmx_transform(rm, 3, cmtx);
492 if (!mydm)
493 return(0);
494 rm = mydm;
495 }
496 if ((dtype == DTfloat) | (dtype == DTdouble))
497 fputendian(fp); /* important to record */
498 fputformat(cm_fmt_id[dtype], fp);
499 fputc('\n', fp);
500 switch (dtype) { /* write data */
501 case DTascii:
502 ok = rmx_write_ascii(rm, fp);
503 break;
504 case DTfloat:
505 ok = rmx_write_float(rm, fp);
506 break;
507 case DTdouble:
508 ok = rmx_write_double(rm, fp);
509 break;
510 case DTrgbe:
511 case DTxyze:
512 fprtresolu(rm->ncols, rm->nrows, fp);
513 ok = rmx_write_rgbe(rm, fp);
514 break;
515 default:
516 return(0);
517 }
518 ok &= (fflush(fp) == 0);
519 #ifdef getc_unlocked
520 funlockfile(fp);
521 #endif
522 if (mydm)
523 rmx_free(mydm);
524 return(ok);
525 }
526
527 /* Allocate and assign square identity matrix with n components */
528 RMATRIX *
529 rmx_identity(const int dim, const int n)
530 {
531 RMATRIX *rid = rmx_alloc(dim, dim, n);
532 int i, k;
533
534 if (!rid)
535 return(NULL);
536 memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
537 for (i = dim; i--; )
538 for (k = n; k--; )
539 rmx_lval(rid,i,i,k) = 1;
540 return(rid);
541 }
542
543 /* Duplicate the given matrix */
544 RMATRIX *
545 rmx_copy(const RMATRIX *rm)
546 {
547 RMATRIX *dnew;
548
549 if (!rm)
550 return(NULL);
551 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
552 if (!dnew)
553 return(NULL);
554 rmx_addinfo(dnew, rm->info);
555 dnew->dtype = rm->dtype;
556 memcpy(dnew->mtx, rm->mtx,
557 sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
558 return(dnew);
559 }
560
561 /* Allocate and assign transposed matrix */
562 RMATRIX *
563 rmx_transpose(const RMATRIX *rm)
564 {
565 RMATRIX *dnew;
566 int i, j, k;
567
568 if (!rm)
569 return(0);
570 if ((rm->nrows == 1) | (rm->ncols == 1)) {
571 dnew = rmx_copy(rm);
572 if (!dnew)
573 return(NULL);
574 dnew->nrows = rm->ncols;
575 dnew->ncols = rm->nrows;
576 return(dnew);
577 }
578 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
579 if (!dnew)
580 return(NULL);
581 if (rm->info) {
582 rmx_addinfo(dnew, rm->info);
583 rmx_addinfo(dnew, "Transposed rows and columns\n");
584 }
585 dnew->dtype = rm->dtype;
586 for (i = dnew->nrows; i--; )
587 for (j = dnew->ncols; j--; )
588 for (k = dnew->ncomp; k--; )
589 rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
590 return(dnew);
591 }
592
593 /* Multiply (concatenate) two matrices and allocate the result */
594 RMATRIX *
595 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
596 {
597 RMATRIX *mres;
598 int i, j, k, h;
599
600 if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
601 return(NULL);
602 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
603 if (!mres)
604 return(NULL);
605 i = rmx_newtype(m1->dtype, m2->dtype);
606 if (i)
607 mres->dtype = i;
608 else
609 rmx_addinfo(mres, rmx_mismatch_warn);
610 for (i = mres->nrows; i--; )
611 for (j = mres->ncols; j--; )
612 for (k = mres->ncomp; k--; ) {
613 long double d = 0;
614 for (h = m1->ncols; h--; )
615 d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
616 rmx_lval(mres,i,j,k) = (double)d;
617 }
618 return(mres);
619 }
620
621 /* Element-wise multiplication (or division) of m2 into m1 */
622 int
623 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
624 {
625 int zeroDivides = 0;
626 int i, j, k;
627
628 if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
629 return(0);
630 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
631 return(0);
632 i = rmx_newtype(m1->dtype, m2->dtype);
633 if (i)
634 m1->dtype = i;
635 else
636 rmx_addinfo(m1, rmx_mismatch_warn);
637 for (i = m1->nrows; i--; )
638 for (j = m1->ncols; j--; )
639 if (divide) {
640 double d;
641 if (m2->ncomp == 1) {
642 d = rmx_lval(m2,i,j,0);
643 if (d == 0) {
644 ++zeroDivides;
645 for (k = m1->ncomp; k--; )
646 rmx_lval(m1,i,j,k) = 0;
647 } else {
648 d = 1./d;
649 for (k = m1->ncomp; k--; )
650 rmx_lval(m1,i,j,k) *= d;
651 }
652 } else
653 for (k = m1->ncomp; k--; ) {
654 d = rmx_lval(m2,i,j,k);
655 if (d == 0) {
656 ++zeroDivides;
657 rmx_lval(m1,i,j,k) = 0;
658 } else
659 rmx_lval(m1,i,j,k) /= d;
660 }
661 } else {
662 if (m2->ncomp == 1) {
663 const double d = rmx_lval(m2,i,j,0);
664 for (k = m1->ncomp; k--; )
665 rmx_lval(m1,i,j,k) *= d;
666 } else
667 for (k = m1->ncomp; k--; )
668 rmx_lval(m1,i,j,k) *= rmx_lval(m2,i,j,k);
669 }
670 if (zeroDivides) {
671 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
672 errno = ERANGE;
673 }
674 return(1);
675 }
676
677 /* Sum second matrix into first, applying scale factor beforehand */
678 int
679 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
680 {
681 double *mysf = NULL;
682 int i, j, k;
683
684 if (!msum | !madd ||
685 (msum->nrows != madd->nrows) |
686 (msum->ncols != madd->ncols) |
687 (msum->ncomp != madd->ncomp))
688 return(0);
689 if (!sf) {
690 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
691 if (!mysf)
692 return(0);
693 for (k = msum->ncomp; k--; )
694 mysf[k] = 1;
695 sf = mysf;
696 }
697 i = rmx_newtype(msum->dtype, madd->dtype);
698 if (i)
699 msum->dtype = i;
700 else
701 rmx_addinfo(msum, rmx_mismatch_warn);
702 for (i = msum->nrows; i--; )
703 for (j = msum->ncols; j--; )
704 for (k = msum->ncomp; k--; )
705 rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
706 if (mysf)
707 free(mysf);
708 return(1);
709 }
710
711 /* Scale the given matrix by the indicated scalar component vector */
712 int
713 rmx_scale(RMATRIX *rm, const double sf[])
714 {
715 int i, j, k;
716
717 if (!rm | !sf)
718 return(0);
719 for (i = rm->nrows; i--; )
720 for (j = rm->ncols; j--; )
721 for (k = rm->ncomp; k--; )
722 rmx_lval(rm,i,j,k) *= sf[k];
723
724 if (rm->info)
725 rmx_addinfo(rm, "Applied scalar\n");
726 return(1);
727 }
728
729 /* Allocate new matrix and apply component transformation */
730 RMATRIX *
731 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
732 {
733 int i, j, ks, kd;
734 RMATRIX *dnew;
735
736 if (!msrc | (n <= 0) | !cmat)
737 return(NULL);
738 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
739 if (!dnew)
740 return(NULL);
741 if (msrc->info) {
742 char buf[128];
743 sprintf(buf, "Applied %dx%d component transform\n",
744 dnew->ncomp, msrc->ncomp);
745 rmx_addinfo(dnew, msrc->info);
746 rmx_addinfo(dnew, buf);
747 }
748 dnew->dtype = msrc->dtype;
749 for (i = dnew->nrows; i--; )
750 for (j = dnew->ncols; j--; )
751 for (kd = dnew->ncomp; kd--; ) {
752 double d = 0;
753 for (ks = msrc->ncomp; ks--; )
754 d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
755 rmx_lval(dnew,i,j,kd) = d;
756 }
757 return(dnew);
758 }
759
760 /* Convert a color matrix to newly allocated RMATRIX buffer */
761 RMATRIX *
762 rmx_from_cmatrix(const CMATRIX *cm)
763 {
764 int i, j;
765 RMATRIX *dnew;
766
767 if (!cm)
768 return(NULL);
769 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
770 if (!dnew)
771 return(NULL);
772 dnew->dtype = DTfloat;
773 for (i = dnew->nrows; i--; )
774 for (j = dnew->ncols; j--; ) {
775 const COLORV *cv = cm_lval(cm,i,j);
776 rmx_lval(dnew,i,j,0) = cv[0];
777 rmx_lval(dnew,i,j,1) = cv[1];
778 rmx_lval(dnew,i,j,2) = cv[2];
779 }
780 return(dnew);
781 }
782
783 /* Convert general matrix to newly allocated CMATRIX buffer */
784 CMATRIX *
785 cm_from_rmatrix(const RMATRIX *rm)
786 {
787 int i, j;
788 CMATRIX *cnew;
789
790 if (!rm || rm->ncomp != 3)
791 return(NULL);
792 cnew = cm_alloc(rm->nrows, rm->ncols);
793 if (!cnew)
794 return(NULL);
795 for (i = cnew->nrows; i--; )
796 for (j = cnew->ncols; j--; ) {
797 COLORV *cv = cm_lval(cnew,i,j);
798 cv[0] = (COLORV)rmx_lval(rm,i,j,0);
799 cv[1] = (COLORV)rmx_lval(rm,i,j,1);
800 cv[2] = (COLORV)rmx_lval(rm,i,j,2);
801 }
802 return(cnew);
803 }