| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: rmatrix.c,v 2.44 2020/05/07 18:45:16 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* General matrix operations.
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include <stdlib.h>
|
| 9 |
#include <errno.h>
|
| 10 |
#include "rtio.h"
|
| 11 |
#include "platform.h"
|
| 12 |
#include "resolu.h"
|
| 13 |
#include "paths.h"
|
| 14 |
#include "rmatrix.h"
|
| 15 |
|
| 16 |
static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
|
| 17 |
|
| 18 |
/* Allocate a nr x nc matrix with n components */
|
| 19 |
RMATRIX *
|
| 20 |
rmx_alloc(int nr, int nc, int n)
|
| 21 |
{
|
| 22 |
RMATRIX *dnew;
|
| 23 |
|
| 24 |
if ((nr <= 0) | (nc <= 0) | (n <= 0))
|
| 25 |
return(NULL);
|
| 26 |
dnew = (RMATRIX *)malloc(sizeof(RMATRIX)-sizeof(dnew->mtx) +
|
| 27 |
sizeof(dnew->mtx[0])*n*nr*nc);
|
| 28 |
if (!dnew)
|
| 29 |
return(NULL);
|
| 30 |
dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n;
|
| 31 |
dnew->dtype = DTdouble;
|
| 32 |
dnew->swapin = 0;
|
| 33 |
dnew->info = NULL;
|
| 34 |
return(dnew);
|
| 35 |
}
|
| 36 |
|
| 37 |
/* Free a RMATRIX array */
|
| 38 |
void
|
| 39 |
rmx_free(RMATRIX *rm)
|
| 40 |
{
|
| 41 |
if (!rm) return;
|
| 42 |
if (rm->info)
|
| 43 |
free(rm->info);
|
| 44 |
free(rm);
|
| 45 |
}
|
| 46 |
|
| 47 |
/* Resolve data type based on two input types (returns 0 for mismatch) */
|
| 48 |
int
|
| 49 |
rmx_newtype(int dtyp1, int dtyp2)
|
| 50 |
{
|
| 51 |
if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
|
| 52 |
(dtyp2==DTxyze) | (dtyp2==DTrgbe)
|
| 53 |
&& dtyp1 != dtyp2)
|
| 54 |
return(0);
|
| 55 |
if (dtyp1 < dtyp2)
|
| 56 |
return(dtyp1);
|
| 57 |
return(dtyp2);
|
| 58 |
}
|
| 59 |
|
| 60 |
/* Append header information associated with matrix data */
|
| 61 |
int
|
| 62 |
rmx_addinfo(RMATRIX *rm, const char *info)
|
| 63 |
{
|
| 64 |
if (!rm || !info || !*info)
|
| 65 |
return(0);
|
| 66 |
if (!rm->info) {
|
| 67 |
rm->info = (char *)malloc(strlen(info)+1);
|
| 68 |
if (rm->info) rm->info[0] = '\0';
|
| 69 |
} else
|
| 70 |
rm->info = (char *)realloc(rm->info,
|
| 71 |
strlen(rm->info)+strlen(info)+1);
|
| 72 |
if (!rm->info)
|
| 73 |
return(0);
|
| 74 |
strcat(rm->info, info);
|
| 75 |
return(1);
|
| 76 |
}
|
| 77 |
|
| 78 |
static int
|
| 79 |
get_dminfo(char *s, void *p)
|
| 80 |
{
|
| 81 |
RMATRIX *ip = (RMATRIX *)p;
|
| 82 |
char fmt[MAXFMTLEN];
|
| 83 |
int i;
|
| 84 |
|
| 85 |
if (headidval(fmt, s))
|
| 86 |
return(0);
|
| 87 |
if (!strncmp(s, "NCOMP=", 6)) {
|
| 88 |
ip->ncomp = atoi(s+6);
|
| 89 |
return(0);
|
| 90 |
}
|
| 91 |
if (!strncmp(s, "NROWS=", 6)) {
|
| 92 |
ip->nrows = atoi(s+6);
|
| 93 |
return(0);
|
| 94 |
}
|
| 95 |
if (!strncmp(s, "NCOLS=", 6)) {
|
| 96 |
ip->ncols = atoi(s+6);
|
| 97 |
return(0);
|
| 98 |
}
|
| 99 |
if ((i = isbigendian(s)) >= 0) {
|
| 100 |
ip->swapin = (nativebigendian() != i);
|
| 101 |
return(0);
|
| 102 |
}
|
| 103 |
if (isexpos(s)) {
|
| 104 |
double d = exposval(s);
|
| 105 |
scalecolor(ip->mtx, d);
|
| 106 |
return(0);
|
| 107 |
}
|
| 108 |
if (iscolcor(s)) {
|
| 109 |
COLOR ctmp;
|
| 110 |
colcorval(ctmp, s);
|
| 111 |
multcolor(ip->mtx, ctmp);
|
| 112 |
return(0);
|
| 113 |
}
|
| 114 |
if (!formatval(fmt, s)) {
|
| 115 |
rmx_addinfo(ip, s);
|
| 116 |
return(0);
|
| 117 |
}
|
| 118 |
for (i = 1; i < DTend; i++)
|
| 119 |
if (!strcmp(fmt, cm_fmt_id[i])) {
|
| 120 |
ip->dtype = i;
|
| 121 |
return(0);
|
| 122 |
}
|
| 123 |
return(-1);
|
| 124 |
}
|
| 125 |
|
| 126 |
static int
|
| 127 |
rmx_load_ascii(RMATRIX *rm, FILE *fp)
|
| 128 |
{
|
| 129 |
int i, j, k;
|
| 130 |
|
| 131 |
for (i = 0; i < rm->nrows; i++)
|
| 132 |
for (j = 0; j < rm->ncols; j++)
|
| 133 |
for (k = 0; k < rm->ncomp; k++)
|
| 134 |
if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
|
| 135 |
return(0);
|
| 136 |
return(1);
|
| 137 |
}
|
| 138 |
|
| 139 |
static int
|
| 140 |
rmx_load_float(RMATRIX *rm, FILE *fp)
|
| 141 |
{
|
| 142 |
int i, j, k;
|
| 143 |
float val[100];
|
| 144 |
|
| 145 |
if (rm->ncomp > 100) {
|
| 146 |
fputs("Unsupported # components in rmx_load_float()\n", stderr);
|
| 147 |
exit(1);
|
| 148 |
}
|
| 149 |
for (i = 0; i < rm->nrows; i++)
|
| 150 |
for (j = 0; j < rm->ncols; j++) {
|
| 151 |
if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
|
| 152 |
return(0);
|
| 153 |
if (rm->swapin)
|
| 154 |
swap32((char *)val, rm->ncomp);
|
| 155 |
for (k = rm->ncomp; k--; )
|
| 156 |
rmx_lval(rm,i,j,k) = val[k];
|
| 157 |
}
|
| 158 |
return(1);
|
| 159 |
}
|
| 160 |
|
| 161 |
static int
|
| 162 |
rmx_load_double(RMATRIX *rm, FILE *fp)
|
| 163 |
{
|
| 164 |
int i;
|
| 165 |
|
| 166 |
if ((char *)&rmx_lval(rm,1,0,0) - (char *)&rmx_lval(rm,0,0,0) !=
|
| 167 |
sizeof(double)*rm->ncols*rm->ncomp) {
|
| 168 |
fputs("Code error in rmx_load_double()\n", stderr);
|
| 169 |
exit(1);
|
| 170 |
}
|
| 171 |
for (i = 0; i < rm->nrows; i++) {
|
| 172 |
if (getbinary(&rmx_lval(rm,i,0,0), sizeof(double)*rm->ncomp,
|
| 173 |
rm->ncols, fp) != rm->ncols)
|
| 174 |
return(0);
|
| 175 |
if (rm->swapin)
|
| 176 |
swap64((char *)&rmx_lval(rm,i,0,0), rm->ncols*rm->ncomp);
|
| 177 |
}
|
| 178 |
return(1);
|
| 179 |
}
|
| 180 |
|
| 181 |
static int
|
| 182 |
rmx_load_rgbe(RMATRIX *rm, FILE *fp)
|
| 183 |
{
|
| 184 |
COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
|
| 185 |
int i, j;
|
| 186 |
|
| 187 |
if (!scan)
|
| 188 |
return(0);
|
| 189 |
for (i = 0; i < rm->nrows; i++) {
|
| 190 |
if (freadscan(scan, rm->ncols, fp) < 0) {
|
| 191 |
free(scan);
|
| 192 |
return(0);
|
| 193 |
}
|
| 194 |
for (j = rm->ncols; j--; ) {
|
| 195 |
rmx_lval(rm,i,j,0) = colval(scan[j],RED);
|
| 196 |
rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
|
| 197 |
rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
|
| 198 |
}
|
| 199 |
}
|
| 200 |
free(scan);
|
| 201 |
return(1);
|
| 202 |
}
|
| 203 |
|
| 204 |
/* Load matrix from supported file type */
|
| 205 |
RMATRIX *
|
| 206 |
rmx_load(const char *inspec)
|
| 207 |
{
|
| 208 |
FILE *fp = stdin;
|
| 209 |
RMATRIX dinfo;
|
| 210 |
RMATRIX *dnew;
|
| 211 |
|
| 212 |
if (!inspec) { /* reading from stdin? */
|
| 213 |
inspec = "<stdin>";
|
| 214 |
SET_FILE_BINARY(stdin);
|
| 215 |
} else if (inspec[0] == '!') {
|
| 216 |
if (!(fp = popen(inspec+1, "r")))
|
| 217 |
return(NULL);
|
| 218 |
SET_FILE_BINARY(fp);
|
| 219 |
} else {
|
| 220 |
const char *sp = inspec; /* check suffix */
|
| 221 |
while (*sp)
|
| 222 |
++sp;
|
| 223 |
while (sp > inspec && sp[-1] != '.')
|
| 224 |
--sp;
|
| 225 |
if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
|
| 226 |
CMATRIX *cm = cm_loadBTDF((char *)inspec);
|
| 227 |
if (!cm)
|
| 228 |
return(NULL);
|
| 229 |
dnew = rmx_from_cmatrix(cm);
|
| 230 |
cm_free(cm);
|
| 231 |
dnew->dtype = DTascii;
|
| 232 |
return(dnew);
|
| 233 |
}
|
| 234 |
/* else open it ourselves */
|
| 235 |
if (!(fp = fopen(inspec, "rb")))
|
| 236 |
return(NULL);
|
| 237 |
}
|
| 238 |
#ifdef getc_unlocked
|
| 239 |
flockfile(fp);
|
| 240 |
#endif
|
| 241 |
dinfo.nrows = dinfo.ncols = dinfo.ncomp = 0;
|
| 242 |
dinfo.dtype = DTascii; /* assumed w/o FORMAT */
|
| 243 |
dinfo.swapin = 0;
|
| 244 |
dinfo.info = NULL;
|
| 245 |
dinfo.mtx[0] = dinfo.mtx[1] = dinfo.mtx[2] = 1.;
|
| 246 |
if (getheader(fp, get_dminfo, &dinfo) < 0) {
|
| 247 |
fclose(fp);
|
| 248 |
return(NULL);
|
| 249 |
}
|
| 250 |
if ((dinfo.nrows <= 0) | (dinfo.ncols <= 0)) {
|
| 251 |
if (!fscnresolu(&dinfo.ncols, &dinfo.nrows, fp)) {
|
| 252 |
fclose(fp);
|
| 253 |
return(NULL);
|
| 254 |
}
|
| 255 |
if (dinfo.ncomp <= 0)
|
| 256 |
dinfo.ncomp = 3;
|
| 257 |
else if ((dinfo.dtype == DTrgbe) | (dinfo.dtype == DTxyze) &&
|
| 258 |
dinfo.ncomp != 3) {
|
| 259 |
fclose(fp);
|
| 260 |
return(NULL);
|
| 261 |
}
|
| 262 |
}
|
| 263 |
dnew = rmx_alloc(dinfo.nrows, dinfo.ncols, dinfo.ncomp);
|
| 264 |
if (!dnew) {
|
| 265 |
fclose(fp);
|
| 266 |
return(NULL);
|
| 267 |
}
|
| 268 |
dnew->info = dinfo.info;
|
| 269 |
switch (dinfo.dtype) {
|
| 270 |
case DTascii:
|
| 271 |
SET_FILE_TEXT(fp);
|
| 272 |
if (!rmx_load_ascii(dnew, fp))
|
| 273 |
goto loaderr;
|
| 274 |
dnew->dtype = DTascii; /* should leave double? */
|
| 275 |
break;
|
| 276 |
case DTfloat:
|
| 277 |
dnew->swapin = dinfo.swapin;
|
| 278 |
if (!rmx_load_float(dnew, fp))
|
| 279 |
goto loaderr;
|
| 280 |
dnew->dtype = DTfloat;
|
| 281 |
break;
|
| 282 |
case DTdouble:
|
| 283 |
dnew->swapin = dinfo.swapin;
|
| 284 |
if (!rmx_load_double(dnew, fp))
|
| 285 |
goto loaderr;
|
| 286 |
dnew->dtype = DTdouble;
|
| 287 |
break;
|
| 288 |
case DTrgbe:
|
| 289 |
case DTxyze:
|
| 290 |
if (!rmx_load_rgbe(dnew, fp))
|
| 291 |
goto loaderr;
|
| 292 |
dnew->dtype = dinfo.dtype; /* undo exposure? */
|
| 293 |
if ((dinfo.mtx[0] != 1.) | (dinfo.mtx[1] != 1.) |
|
| 294 |
(dinfo.mtx[2] != 1.)) {
|
| 295 |
dinfo.mtx[0] = 1./dinfo.mtx[0];
|
| 296 |
dinfo.mtx[1] = 1./dinfo.mtx[1];
|
| 297 |
dinfo.mtx[2] = 1./dinfo.mtx[2];
|
| 298 |
rmx_scale(dnew, dinfo.mtx);
|
| 299 |
}
|
| 300 |
break;
|
| 301 |
default:
|
| 302 |
goto loaderr;
|
| 303 |
}
|
| 304 |
if (fp != stdin) {
|
| 305 |
if (inspec[0] == '!')
|
| 306 |
pclose(fp);
|
| 307 |
else
|
| 308 |
fclose(fp);
|
| 309 |
}
|
| 310 |
#ifdef getc_unlocked
|
| 311 |
else
|
| 312 |
funlockfile(fp);
|
| 313 |
#endif
|
| 314 |
return(dnew);
|
| 315 |
loaderr: /* should report error? */
|
| 316 |
if (inspec[0] == '!')
|
| 317 |
pclose(fp);
|
| 318 |
else
|
| 319 |
fclose(fp);
|
| 320 |
rmx_free(dnew);
|
| 321 |
return(NULL);
|
| 322 |
}
|
| 323 |
|
| 324 |
static int
|
| 325 |
rmx_write_ascii(const RMATRIX *rm, FILE *fp)
|
| 326 |
{
|
| 327 |
const char *fmt = (rm->dtype == DTfloat) ? " %.7e" :
|
| 328 |
(rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" :
|
| 329 |
" %.15e" ;
|
| 330 |
int i, j, k;
|
| 331 |
|
| 332 |
for (i = 0; i < rm->nrows; i++) {
|
| 333 |
for (j = 0; j < rm->ncols; j++) {
|
| 334 |
for (k = 0; k < rm->ncomp; k++)
|
| 335 |
fprintf(fp, fmt, rmx_lval(rm,i,j,k));
|
| 336 |
fputc('\t', fp);
|
| 337 |
}
|
| 338 |
fputc('\n', fp);
|
| 339 |
}
|
| 340 |
return(1);
|
| 341 |
}
|
| 342 |
|
| 343 |
static int
|
| 344 |
rmx_write_float(const RMATRIX *rm, FILE *fp)
|
| 345 |
{
|
| 346 |
int i, j, k;
|
| 347 |
float val[100];
|
| 348 |
|
| 349 |
if (rm->ncomp > 100) {
|
| 350 |
fputs("Unsupported # components in rmx_write_float()\n", stderr);
|
| 351 |
exit(1);
|
| 352 |
}
|
| 353 |
for (i = 0; i < rm->nrows; i++)
|
| 354 |
for (j = 0; j < rm->ncols; j++) {
|
| 355 |
for (k = rm->ncomp; k--; )
|
| 356 |
val[k] = (float)rmx_lval(rm,i,j,k);
|
| 357 |
if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
|
| 358 |
return(0);
|
| 359 |
}
|
| 360 |
return(1);
|
| 361 |
}
|
| 362 |
|
| 363 |
static int
|
| 364 |
rmx_write_double(const RMATRIX *rm, FILE *fp)
|
| 365 |
{
|
| 366 |
int i, j;
|
| 367 |
|
| 368 |
for (i = 0; i < rm->nrows; i++)
|
| 369 |
for (j = 0; j < rm->ncols; j++)
|
| 370 |
if (putbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
|
| 371 |
return(0);
|
| 372 |
return(1);
|
| 373 |
}
|
| 374 |
|
| 375 |
static int
|
| 376 |
rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
|
| 377 |
{
|
| 378 |
COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols);
|
| 379 |
int i, j;
|
| 380 |
|
| 381 |
if (!scan)
|
| 382 |
return(0);
|
| 383 |
for (i = 0; i < rm->nrows; i++) {
|
| 384 |
for (j = rm->ncols; j--; )
|
| 385 |
setcolr(scan[j], rmx_lval(rm,i,j,0),
|
| 386 |
rmx_lval(rm,i,j,1),
|
| 387 |
rmx_lval(rm,i,j,2) );
|
| 388 |
if (fwritecolrs(scan, rm->ncols, fp) < 0) {
|
| 389 |
free(scan);
|
| 390 |
return(0);
|
| 391 |
}
|
| 392 |
}
|
| 393 |
free(scan);
|
| 394 |
return(1);
|
| 395 |
}
|
| 396 |
|
| 397 |
/* Write matrix to file type indicated by dtype */
|
| 398 |
int
|
| 399 |
rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
|
| 400 |
{
|
| 401 |
RMATRIX *mydm = NULL;
|
| 402 |
int ok = 1;
|
| 403 |
|
| 404 |
if (!rm | !fp)
|
| 405 |
return(0);
|
| 406 |
#ifdef getc_unlocked
|
| 407 |
flockfile(fp);
|
| 408 |
#endif
|
| 409 |
/* complete header */
|
| 410 |
if (rm->info)
|
| 411 |
fputs(rm->info, fp);
|
| 412 |
if (dtype == DTfromHeader)
|
| 413 |
dtype = rm->dtype;
|
| 414 |
else if ((dtype == DTrgbe) & (rm->dtype == DTxyze))
|
| 415 |
dtype = DTxyze;
|
| 416 |
else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
|
| 417 |
dtype = DTrgbe;
|
| 418 |
if ((dtype != DTrgbe) & (dtype != DTxyze)) {
|
| 419 |
fprintf(fp, "NROWS=%d\n", rm->nrows);
|
| 420 |
fprintf(fp, "NCOLS=%d\n", rm->ncols);
|
| 421 |
fprintf(fp, "NCOMP=%d\n", rm->ncomp);
|
| 422 |
} else if (rm->ncomp != 3) { /* wrong # components? */
|
| 423 |
double cmtx[3];
|
| 424 |
if (rm->ncomp != 1) /* only convert grayscale */
|
| 425 |
return(0);
|
| 426 |
cmtx[0] = cmtx[1] = cmtx[2] = 1;
|
| 427 |
mydm = rmx_transform(rm, 3, cmtx);
|
| 428 |
if (!mydm)
|
| 429 |
return(0);
|
| 430 |
rm = mydm;
|
| 431 |
}
|
| 432 |
if ((dtype == DTfloat) | (dtype == DTdouble))
|
| 433 |
fputendian(fp); /* important to record */
|
| 434 |
fputformat((char *)cm_fmt_id[dtype], fp);
|
| 435 |
fputc('\n', fp);
|
| 436 |
switch (dtype) { /* write data */
|
| 437 |
case DTascii:
|
| 438 |
ok = rmx_write_ascii(rm, fp);
|
| 439 |
break;
|
| 440 |
case DTfloat:
|
| 441 |
ok = rmx_write_float(rm, fp);
|
| 442 |
break;
|
| 443 |
case DTdouble:
|
| 444 |
ok = rmx_write_double(rm, fp);
|
| 445 |
break;
|
| 446 |
case DTrgbe:
|
| 447 |
case DTxyze:
|
| 448 |
fprtresolu(rm->ncols, rm->nrows, fp);
|
| 449 |
ok = rmx_write_rgbe(rm, fp);
|
| 450 |
break;
|
| 451 |
default:
|
| 452 |
return(0);
|
| 453 |
}
|
| 454 |
ok &= (fflush(fp) == 0);
|
| 455 |
#ifdef getc_unlocked
|
| 456 |
funlockfile(fp);
|
| 457 |
#endif
|
| 458 |
if (mydm)
|
| 459 |
rmx_free(mydm);
|
| 460 |
return(ok);
|
| 461 |
}
|
| 462 |
|
| 463 |
/* Allocate and assign square identity matrix with n components */
|
| 464 |
RMATRIX *
|
| 465 |
rmx_identity(const int dim, const int n)
|
| 466 |
{
|
| 467 |
RMATRIX *rid = rmx_alloc(dim, dim, n);
|
| 468 |
int i, k;
|
| 469 |
|
| 470 |
if (!rid)
|
| 471 |
return(NULL);
|
| 472 |
memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
|
| 473 |
for (i = dim; i--; )
|
| 474 |
for (k = n; k--; )
|
| 475 |
rmx_lval(rid,i,i,k) = 1;
|
| 476 |
return(rid);
|
| 477 |
}
|
| 478 |
|
| 479 |
/* Duplicate the given matrix */
|
| 480 |
RMATRIX *
|
| 481 |
rmx_copy(const RMATRIX *rm)
|
| 482 |
{
|
| 483 |
RMATRIX *dnew;
|
| 484 |
|
| 485 |
if (!rm)
|
| 486 |
return(NULL);
|
| 487 |
dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
|
| 488 |
if (!dnew)
|
| 489 |
return(NULL);
|
| 490 |
rmx_addinfo(dnew, rm->info);
|
| 491 |
dnew->dtype = rm->dtype;
|
| 492 |
memcpy(dnew->mtx, rm->mtx,
|
| 493 |
sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
|
| 494 |
return(dnew);
|
| 495 |
}
|
| 496 |
|
| 497 |
/* Allocate and assign transposed matrix */
|
| 498 |
RMATRIX *
|
| 499 |
rmx_transpose(const RMATRIX *rm)
|
| 500 |
{
|
| 501 |
RMATRIX *dnew;
|
| 502 |
int i, j, k;
|
| 503 |
|
| 504 |
if (!rm)
|
| 505 |
return(0);
|
| 506 |
if ((rm->nrows == 1) | (rm->ncols == 1)) {
|
| 507 |
dnew = rmx_copy(rm);
|
| 508 |
if (!dnew)
|
| 509 |
return(NULL);
|
| 510 |
dnew->nrows = rm->ncols;
|
| 511 |
dnew->ncols = rm->nrows;
|
| 512 |
return(dnew);
|
| 513 |
}
|
| 514 |
dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
|
| 515 |
if (!dnew)
|
| 516 |
return(NULL);
|
| 517 |
if (rm->info) {
|
| 518 |
rmx_addinfo(dnew, rm->info);
|
| 519 |
rmx_addinfo(dnew, "Transposed rows and columns\n");
|
| 520 |
}
|
| 521 |
dnew->dtype = rm->dtype;
|
| 522 |
for (i = dnew->nrows; i--; )
|
| 523 |
for (j = dnew->ncols; j--; )
|
| 524 |
for (k = dnew->ncomp; k--; )
|
| 525 |
rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
|
| 526 |
return(dnew);
|
| 527 |
}
|
| 528 |
|
| 529 |
/* Multiply (concatenate) two matrices and allocate the result */
|
| 530 |
RMATRIX *
|
| 531 |
rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
|
| 532 |
{
|
| 533 |
RMATRIX *mres;
|
| 534 |
int i, j, k, h;
|
| 535 |
|
| 536 |
if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
|
| 537 |
return(NULL);
|
| 538 |
mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
|
| 539 |
if (!mres)
|
| 540 |
return(NULL);
|
| 541 |
i = rmx_newtype(m1->dtype, m2->dtype);
|
| 542 |
if (i)
|
| 543 |
mres->dtype = i;
|
| 544 |
else
|
| 545 |
rmx_addinfo(mres, rmx_mismatch_warn);
|
| 546 |
for (i = mres->nrows; i--; )
|
| 547 |
for (j = mres->ncols; j--; )
|
| 548 |
for (k = mres->ncomp; k--; ) {
|
| 549 |
long double d = 0;
|
| 550 |
for (h = m1->ncols; h--; )
|
| 551 |
d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
|
| 552 |
rmx_lval(mres,i,j,k) = (double)d;
|
| 553 |
}
|
| 554 |
return(mres);
|
| 555 |
}
|
| 556 |
|
| 557 |
/* Element-wise multiplication (or division) of m2 into m1 */
|
| 558 |
int
|
| 559 |
rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
|
| 560 |
{
|
| 561 |
int zeroDivides = 0;
|
| 562 |
int i, j, k;
|
| 563 |
|
| 564 |
if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
|
| 565 |
return(0);
|
| 566 |
if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
|
| 567 |
return(0);
|
| 568 |
i = rmx_newtype(m1->dtype, m2->dtype);
|
| 569 |
if (i)
|
| 570 |
m1->dtype = i;
|
| 571 |
else
|
| 572 |
rmx_addinfo(m1, rmx_mismatch_warn);
|
| 573 |
for (i = m1->nrows; i--; )
|
| 574 |
for (j = m1->ncols; j--; )
|
| 575 |
if (divide) {
|
| 576 |
double d;
|
| 577 |
if (m2->ncomp == 1) {
|
| 578 |
d = rmx_lval(m2,i,j,0);
|
| 579 |
if (d == 0) {
|
| 580 |
++zeroDivides;
|
| 581 |
for (k = m1->ncomp; k--; )
|
| 582 |
rmx_lval(m1,i,j,k) = 0;
|
| 583 |
} else {
|
| 584 |
d = 1./d;
|
| 585 |
for (k = m1->ncomp; k--; )
|
| 586 |
rmx_lval(m1,i,j,k) *= d;
|
| 587 |
}
|
| 588 |
} else
|
| 589 |
for (k = m1->ncomp; k--; ) {
|
| 590 |
d = rmx_lval(m2,i,j,k);
|
| 591 |
if (d == 0) {
|
| 592 |
++zeroDivides;
|
| 593 |
rmx_lval(m1,i,j,k) = 0;
|
| 594 |
} else
|
| 595 |
rmx_lval(m1,i,j,k) /= d;
|
| 596 |
}
|
| 597 |
} else {
|
| 598 |
if (m2->ncomp == 1) {
|
| 599 |
const double d = rmx_lval(m2,i,j,0);
|
| 600 |
for (k = m1->ncomp; k--; )
|
| 601 |
rmx_lval(m1,i,j,k) *= d;
|
| 602 |
} else
|
| 603 |
for (k = m1->ncomp; k--; )
|
| 604 |
rmx_lval(m1,i,j,k) *= rmx_lval(m2,i,j,k);
|
| 605 |
}
|
| 606 |
if (zeroDivides) {
|
| 607 |
rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
|
| 608 |
errno = ERANGE;
|
| 609 |
}
|
| 610 |
return(1);
|
| 611 |
}
|
| 612 |
|
| 613 |
/* Sum second matrix into first, applying scale factor beforehand */
|
| 614 |
int
|
| 615 |
rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
|
| 616 |
{
|
| 617 |
double *mysf = NULL;
|
| 618 |
int i, j, k;
|
| 619 |
|
| 620 |
if (!msum | !madd ||
|
| 621 |
(msum->nrows != madd->nrows) |
|
| 622 |
(msum->ncols != madd->ncols) |
|
| 623 |
(msum->ncomp != madd->ncomp))
|
| 624 |
return(0);
|
| 625 |
if (!sf) {
|
| 626 |
mysf = (double *)malloc(sizeof(double)*msum->ncomp);
|
| 627 |
if (!mysf)
|
| 628 |
return(0);
|
| 629 |
for (k = msum->ncomp; k--; )
|
| 630 |
mysf[k] = 1;
|
| 631 |
sf = mysf;
|
| 632 |
}
|
| 633 |
i = rmx_newtype(msum->dtype, madd->dtype);
|
| 634 |
if (i)
|
| 635 |
msum->dtype = i;
|
| 636 |
else
|
| 637 |
rmx_addinfo(msum, rmx_mismatch_warn);
|
| 638 |
for (i = msum->nrows; i--; )
|
| 639 |
for (j = msum->ncols; j--; )
|
| 640 |
for (k = msum->ncomp; k--; )
|
| 641 |
rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
|
| 642 |
if (mysf)
|
| 643 |
free(mysf);
|
| 644 |
return(1);
|
| 645 |
}
|
| 646 |
|
| 647 |
/* Scale the given matrix by the indicated scalar component vector */
|
| 648 |
int
|
| 649 |
rmx_scale(RMATRIX *rm, const double sf[])
|
| 650 |
{
|
| 651 |
int i, j, k;
|
| 652 |
|
| 653 |
if (!rm | !sf)
|
| 654 |
return(0);
|
| 655 |
for (i = rm->nrows; i--; )
|
| 656 |
for (j = rm->ncols; j--; )
|
| 657 |
for (k = rm->ncomp; k--; )
|
| 658 |
rmx_lval(rm,i,j,k) *= sf[k];
|
| 659 |
|
| 660 |
if (rm->info)
|
| 661 |
rmx_addinfo(rm, "Applied scalar\n");
|
| 662 |
return(1);
|
| 663 |
}
|
| 664 |
|
| 665 |
/* Allocate new matrix and apply component transformation */
|
| 666 |
RMATRIX *
|
| 667 |
rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
|
| 668 |
{
|
| 669 |
int i, j, ks, kd;
|
| 670 |
RMATRIX *dnew;
|
| 671 |
|
| 672 |
if (!msrc | (n <= 0) | !cmat)
|
| 673 |
return(NULL);
|
| 674 |
dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
|
| 675 |
if (!dnew)
|
| 676 |
return(NULL);
|
| 677 |
if (msrc->info) {
|
| 678 |
char buf[128];
|
| 679 |
sprintf(buf, "Applied %dx%d component transform\n",
|
| 680 |
dnew->ncomp, msrc->ncomp);
|
| 681 |
rmx_addinfo(dnew, msrc->info);
|
| 682 |
rmx_addinfo(dnew, buf);
|
| 683 |
}
|
| 684 |
dnew->dtype = msrc->dtype;
|
| 685 |
for (i = dnew->nrows; i--; )
|
| 686 |
for (j = dnew->ncols; j--; )
|
| 687 |
for (kd = dnew->ncomp; kd--; ) {
|
| 688 |
double d = 0;
|
| 689 |
for (ks = msrc->ncomp; ks--; )
|
| 690 |
d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
|
| 691 |
rmx_lval(dnew,i,j,kd) = d;
|
| 692 |
}
|
| 693 |
return(dnew);
|
| 694 |
}
|
| 695 |
|
| 696 |
/* Convert a color matrix to newly allocated RMATRIX buffer */
|
| 697 |
RMATRIX *
|
| 698 |
rmx_from_cmatrix(const CMATRIX *cm)
|
| 699 |
{
|
| 700 |
int i, j;
|
| 701 |
RMATRIX *dnew;
|
| 702 |
|
| 703 |
if (!cm)
|
| 704 |
return(NULL);
|
| 705 |
dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
|
| 706 |
if (!dnew)
|
| 707 |
return(NULL);
|
| 708 |
dnew->dtype = DTfloat;
|
| 709 |
for (i = dnew->nrows; i--; )
|
| 710 |
for (j = dnew->ncols; j--; ) {
|
| 711 |
const COLORV *cv = cm_lval(cm,i,j);
|
| 712 |
rmx_lval(dnew,i,j,0) = cv[0];
|
| 713 |
rmx_lval(dnew,i,j,1) = cv[1];
|
| 714 |
rmx_lval(dnew,i,j,2) = cv[2];
|
| 715 |
}
|
| 716 |
return(dnew);
|
| 717 |
}
|
| 718 |
|
| 719 |
/* Convert general matrix to newly allocated CMATRIX buffer */
|
| 720 |
CMATRIX *
|
| 721 |
cm_from_rmatrix(const RMATRIX *rm)
|
| 722 |
{
|
| 723 |
int i, j;
|
| 724 |
CMATRIX *cnew;
|
| 725 |
|
| 726 |
if (!rm || rm->ncomp != 3)
|
| 727 |
return(NULL);
|
| 728 |
cnew = cm_alloc(rm->nrows, rm->ncols);
|
| 729 |
if (!cnew)
|
| 730 |
return(NULL);
|
| 731 |
for (i = cnew->nrows; i--; )
|
| 732 |
for (j = cnew->ncols; j--; ) {
|
| 733 |
COLORV *cv = cm_lval(cnew,i,j);
|
| 734 |
cv[0] = (COLORV)rmx_lval(rm,i,j,0);
|
| 735 |
cv[1] = (COLORV)rmx_lval(rm,i,j,1);
|
| 736 |
cv[2] = (COLORV)rmx_lval(rm,i,j,2);
|
| 737 |
}
|
| 738 |
return(cnew);
|
| 739 |
}
|