ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.42
Committed: Thu Mar 26 18:04:24 2020 UTC (4 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.41: +2 -3 lines
Log Message:
Fixed bug in last change

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.41 2020/03/26 18:01:26 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15
16 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
17
18 /* Allocate a nr x nc matrix with n components */
19 RMATRIX *
20 rmx_alloc(int nr, int nc, int n)
21 {
22 RMATRIX *dnew;
23
24 if ((nr <= 0) | (nc <= 0) | (n <= 0))
25 return(NULL);
26 dnew = (RMATRIX *)malloc(sizeof(RMATRIX)-sizeof(dnew->mtx) +
27 sizeof(dnew->mtx[0])*(n*nr*nc));
28 if (!dnew)
29 return(NULL);
30 dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n;
31 dnew->dtype = DTdouble;
32 dnew->swapin = 0;
33 dnew->info = NULL;
34 return(dnew);
35 }
36
37 /* Free a RMATRIX array */
38 void
39 rmx_free(RMATRIX *rm)
40 {
41 if (!rm) return;
42 if (rm->info)
43 free(rm->info);
44 free(rm);
45 }
46
47 /* Resolve data type based on two input types (returns 0 for mismatch) */
48 int
49 rmx_newtype(int dtyp1, int dtyp2)
50 {
51 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
52 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
53 && dtyp1 != dtyp2)
54 return(0);
55 if (dtyp1 < dtyp2)
56 return(dtyp1);
57 return(dtyp2);
58 }
59
60 /* Append header information associated with matrix data */
61 int
62 rmx_addinfo(RMATRIX *rm, const char *info)
63 {
64 if (!rm || !info || !*info)
65 return(0);
66 if (!rm->info) {
67 rm->info = (char *)malloc(strlen(info)+1);
68 if (rm->info) rm->info[0] = '\0';
69 } else
70 rm->info = (char *)realloc(rm->info,
71 strlen(rm->info)+strlen(info)+1);
72 if (!rm->info)
73 return(0);
74 strcat(rm->info, info);
75 return(1);
76 }
77
78 static int
79 get_dminfo(char *s, void *p)
80 {
81 RMATRIX *ip = (RMATRIX *)p;
82 char fmt[MAXFMTLEN];
83 int i;
84
85 if (headidval(fmt, s))
86 return(0);
87 if (!strncmp(s, "NCOMP=", 6)) {
88 ip->ncomp = atoi(s+6);
89 return(0);
90 }
91 if (!strncmp(s, "NROWS=", 6)) {
92 ip->nrows = atoi(s+6);
93 return(0);
94 }
95 if (!strncmp(s, "NCOLS=", 6)) {
96 ip->ncols = atoi(s+6);
97 return(0);
98 }
99 if ((i = isbigendian(s)) >= 0) {
100 ip->swapin = (nativebigendian() != i);
101 return(0);
102 }
103 if (isexpos(s)) {
104 double d = exposval(s);
105 scalecolor(ip->mtx, d);
106 return(0);
107 }
108 if (iscolcor(s)) {
109 COLOR ctmp;
110 colcorval(ctmp, s);
111 multcolor(ip->mtx, ctmp);
112 return(0);
113 }
114 if (!formatval(fmt, s)) {
115 rmx_addinfo(ip, s);
116 return(0);
117 }
118 for (i = 1; i < DTend; i++)
119 if (!strcmp(fmt, cm_fmt_id[i])) {
120 ip->dtype = i;
121 return(0);
122 }
123 return(-1);
124 }
125
126 static int
127 rmx_load_ascii(RMATRIX *rm, FILE *fp)
128 {
129 int i, j, k;
130
131 for (i = 0; i < rm->nrows; i++)
132 for (j = 0; j < rm->ncols; j++)
133 for (k = 0; k < rm->ncomp; k++)
134 if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
135 return(0);
136 return(1);
137 }
138
139 static int
140 rmx_load_float(RMATRIX *rm, FILE *fp)
141 {
142 int i, j, k;
143 float val[100];
144
145 if (rm->ncomp > 100) {
146 fputs("Unsupported # components in rmx_load_float()\n", stderr);
147 exit(1);
148 }
149 for (i = 0; i < rm->nrows; i++)
150 for (j = 0; j < rm->ncols; j++) {
151 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
152 return(0);
153 if (rm->swapin)
154 swap32((char *)val, rm->ncomp);
155 for (k = rm->ncomp; k--; )
156 rmx_lval(rm,i,j,k) = val[k];
157 }
158 return(1);
159 }
160
161 static int
162 rmx_load_double(RMATRIX *rm, FILE *fp)
163 {
164 int i;
165
166 if (&rmx_lval(rm,0,0,0) - &rmx_lval(rm,1,0,0) != rm->ncols*rm->ncomp) {
167 fputs("Code error in rmx_load_double()\n", stderr);
168 exit(1);
169 }
170 for (i = 0; i < rm->nrows; i++) {
171 if (getbinary(&rmx_lval(rm,i,0,0), sizeof(double)*rm->ncomp,
172 rm->ncols, fp) != rm->ncols)
173 return(0);
174 if (rm->swapin)
175 swap64((char *)&rmx_lval(rm,i,0,0), rm->ncols*rm->ncomp);
176 }
177 return(1);
178 }
179
180 static int
181 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
182 {
183 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
184 int i, j;
185
186 if (!scan)
187 return(0);
188 for (i = 0; i < rm->nrows; i++) {
189 if (freadscan(scan, rm->ncols, fp) < 0) {
190 free(scan);
191 return(0);
192 }
193 for (j = rm->ncols; j--; ) {
194 rmx_lval(rm,i,j,0) = colval(scan[j],RED);
195 rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
196 rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
197 }
198 }
199 free(scan);
200 return(1);
201 }
202
203 /* Load matrix from supported file type */
204 RMATRIX *
205 rmx_load(const char *inspec)
206 {
207 FILE *fp = stdin;
208 RMATRIX dinfo;
209 RMATRIX *dnew;
210
211 if (!inspec) { /* reading from stdin? */
212 inspec = "<stdin>";
213 SET_FILE_BINARY(stdin);
214 } else if (inspec[0] == '!') {
215 if (!(fp = popen(inspec+1, "r")))
216 return(NULL);
217 SET_FILE_BINARY(fp);
218 } else {
219 const char *sp = inspec; /* check suffix */
220 while (*sp)
221 ++sp;
222 while (sp > inspec && sp[-1] != '.')
223 --sp;
224 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
225 CMATRIX *cm = cm_loadBTDF((char *)inspec);
226 if (!cm)
227 return(NULL);
228 dnew = rmx_from_cmatrix(cm);
229 cm_free(cm);
230 dnew->dtype = DTascii;
231 return(dnew);
232 }
233 /* else open it ourselves */
234 if (!(fp = fopen(inspec, "rb")))
235 return(NULL);
236 }
237 #ifdef getc_unlocked
238 flockfile(fp);
239 #endif
240 dinfo.nrows = dinfo.ncols = dinfo.ncomp = 0;
241 dinfo.dtype = DTascii; /* assumed w/o FORMAT */
242 dinfo.swapin = 0;
243 dinfo.info = NULL;
244 dinfo.mtx[0] = dinfo.mtx[1] = dinfo.mtx[2] = 1.;
245 if (getheader(fp, get_dminfo, &dinfo) < 0) {
246 fclose(fp);
247 return(NULL);
248 }
249 if ((dinfo.nrows <= 0) | (dinfo.ncols <= 0)) {
250 if (!fscnresolu(&dinfo.ncols, &dinfo.nrows, fp)) {
251 fclose(fp);
252 return(NULL);
253 }
254 if (dinfo.ncomp <= 0)
255 dinfo.ncomp = 3;
256 else if ((dinfo.dtype == DTrgbe) | (dinfo.dtype == DTxyze) &&
257 dinfo.ncomp != 3) {
258 fclose(fp);
259 return(NULL);
260 }
261 }
262 dnew = rmx_alloc(dinfo.nrows, dinfo.ncols, dinfo.ncomp);
263 if (!dnew) {
264 fclose(fp);
265 return(NULL);
266 }
267 dnew->info = dinfo.info;
268 switch (dinfo.dtype) {
269 case DTascii:
270 SET_FILE_TEXT(fp);
271 if (!rmx_load_ascii(dnew, fp))
272 goto loaderr;
273 dnew->dtype = DTascii; /* should leave double? */
274 break;
275 case DTfloat:
276 dnew->swapin = dinfo.swapin;
277 if (!rmx_load_float(dnew, fp))
278 goto loaderr;
279 dnew->dtype = DTfloat;
280 break;
281 case DTdouble:
282 dnew->swapin = dinfo.swapin;
283 if (!rmx_load_double(dnew, fp))
284 goto loaderr;
285 dnew->dtype = DTdouble;
286 break;
287 case DTrgbe:
288 case DTxyze:
289 if (!rmx_load_rgbe(dnew, fp))
290 goto loaderr;
291 dnew->dtype = dinfo.dtype; /* undo exposure? */
292 if ((dinfo.mtx[0] != 1.) | (dinfo.mtx[1] != 1.) |
293 (dinfo.mtx[2] != 1.)) {
294 dinfo.mtx[0] = 1./dinfo.mtx[0];
295 dinfo.mtx[1] = 1./dinfo.mtx[1];
296 dinfo.mtx[2] = 1./dinfo.mtx[2];
297 rmx_scale(dnew, dinfo.mtx);
298 }
299 break;
300 default:
301 goto loaderr;
302 }
303 if (fp != stdin) {
304 if (inspec[0] == '!')
305 pclose(fp);
306 else
307 fclose(fp);
308 }
309 #ifdef getc_unlocked
310 else
311 funlockfile(fp);
312 #endif
313 return(dnew);
314 loaderr: /* should report error? */
315 if (inspec[0] == '!')
316 pclose(fp);
317 else
318 fclose(fp);
319 rmx_free(dnew);
320 return(NULL);
321 }
322
323 static int
324 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
325 {
326 const char *fmt = (rm->dtype == DTfloat) ? " %.7e" :
327 (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" :
328 " %.15e" ;
329 int i, j, k;
330
331 for (i = 0; i < rm->nrows; i++) {
332 for (j = 0; j < rm->ncols; j++) {
333 for (k = 0; k < rm->ncomp; k++)
334 fprintf(fp, fmt, rmx_lval(rm,i,j,k));
335 fputc('\t', fp);
336 }
337 fputc('\n', fp);
338 }
339 return(1);
340 }
341
342 static int
343 rmx_write_float(const RMATRIX *rm, FILE *fp)
344 {
345 int i, j, k;
346 float val[100];
347
348 if (rm->ncomp > 100) {
349 fputs("Unsupported # components in rmx_write_float()\n", stderr);
350 exit(1);
351 }
352 for (i = 0; i < rm->nrows; i++)
353 for (j = 0; j < rm->ncols; j++) {
354 for (k = rm->ncomp; k--; )
355 val[k] = (float)rmx_lval(rm,i,j,k);
356 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
357 return(0);
358 }
359 return(1);
360 }
361
362 static int
363 rmx_write_double(const RMATRIX *rm, FILE *fp)
364 {
365 int i, j;
366
367 for (i = 0; i < rm->nrows; i++)
368 for (j = 0; j < rm->ncols; j++)
369 if (putbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
370 return(0);
371 return(1);
372 }
373
374 static int
375 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
376 {
377 COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols);
378 int i, j;
379
380 if (!scan)
381 return(0);
382 for (i = 0; i < rm->nrows; i++) {
383 for (j = rm->ncols; j--; )
384 setcolr(scan[j], rmx_lval(rm,i,j,0),
385 rmx_lval(rm,i,j,1),
386 rmx_lval(rm,i,j,2) );
387 if (fwritecolrs(scan, rm->ncols, fp) < 0) {
388 free(scan);
389 return(0);
390 }
391 }
392 free(scan);
393 return(1);
394 }
395
396 /* Write matrix to file type indicated by dtype */
397 int
398 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
399 {
400 RMATRIX *mydm = NULL;
401 int ok = 1;
402
403 if (!rm | !fp)
404 return(0);
405 #ifdef getc_unlocked
406 flockfile(fp);
407 #endif
408 /* complete header */
409 if (rm->info)
410 fputs(rm->info, fp);
411 if (dtype == DTfromHeader)
412 dtype = rm->dtype;
413 else if ((dtype == DTrgbe) & (rm->dtype == DTxyze))
414 dtype = DTxyze;
415 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
416 dtype = DTrgbe;
417 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
418 fprintf(fp, "NROWS=%d\n", rm->nrows);
419 fprintf(fp, "NCOLS=%d\n", rm->ncols);
420 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
421 } else if (rm->ncomp != 3) { /* wrong # components? */
422 double cmtx[3];
423 if (rm->ncomp != 1) /* only convert grayscale */
424 return(0);
425 cmtx[0] = cmtx[1] = cmtx[2] = 1;
426 mydm = rmx_transform(rm, 3, cmtx);
427 if (!mydm)
428 return(0);
429 rm = mydm;
430 }
431 if ((dtype == DTfloat) | (dtype == DTdouble))
432 fputendian(fp); /* important to record */
433 fputformat((char *)cm_fmt_id[dtype], fp);
434 fputc('\n', fp);
435 switch (dtype) { /* write data */
436 case DTascii:
437 ok = rmx_write_ascii(rm, fp);
438 break;
439 case DTfloat:
440 ok = rmx_write_float(rm, fp);
441 break;
442 case DTdouble:
443 ok = rmx_write_double(rm, fp);
444 break;
445 case DTrgbe:
446 case DTxyze:
447 fprtresolu(rm->ncols, rm->nrows, fp);
448 ok = rmx_write_rgbe(rm, fp);
449 break;
450 default:
451 return(0);
452 }
453 ok &= (fflush(fp) == 0);
454 #ifdef getc_unlocked
455 funlockfile(fp);
456 #endif
457 if (mydm)
458 rmx_free(mydm);
459 return(ok);
460 }
461
462 /* Allocate and assign square identity matrix with n components */
463 RMATRIX *
464 rmx_identity(const int dim, const int n)
465 {
466 RMATRIX *rid = rmx_alloc(dim, dim, n);
467 int i, k;
468
469 if (!rid)
470 return(NULL);
471 memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
472 for (i = dim; i--; )
473 for (k = n; k--; )
474 rmx_lval(rid,i,i,k) = 1;
475 return(rid);
476 }
477
478 /* Duplicate the given matrix */
479 RMATRIX *
480 rmx_copy(const RMATRIX *rm)
481 {
482 RMATRIX *dnew;
483
484 if (!rm)
485 return(NULL);
486 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
487 if (!dnew)
488 return(NULL);
489 rmx_addinfo(dnew, rm->info);
490 dnew->dtype = rm->dtype;
491 memcpy(dnew->mtx, rm->mtx,
492 sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
493 return(dnew);
494 }
495
496 /* Allocate and assign transposed matrix */
497 RMATRIX *
498 rmx_transpose(const RMATRIX *rm)
499 {
500 RMATRIX *dnew;
501 int i, j, k;
502
503 if (!rm)
504 return(0);
505 if ((rm->nrows == 1) | (rm->ncols == 1)) {
506 dnew = rmx_copy(rm);
507 if (!dnew)
508 return(NULL);
509 dnew->nrows = rm->ncols;
510 dnew->ncols = rm->nrows;
511 return(dnew);
512 }
513 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
514 if (!dnew)
515 return(NULL);
516 if (rm->info) {
517 rmx_addinfo(dnew, rm->info);
518 rmx_addinfo(dnew, "Transposed rows and columns\n");
519 }
520 dnew->dtype = rm->dtype;
521 for (i = dnew->nrows; i--; )
522 for (j = dnew->ncols; j--; )
523 for (k = dnew->ncomp; k--; )
524 rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
525 return(dnew);
526 }
527
528 /* Multiply (concatenate) two matrices and allocate the result */
529 RMATRIX *
530 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
531 {
532 RMATRIX *mres;
533 int i, j, k, h;
534
535 if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
536 return(NULL);
537 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
538 if (!mres)
539 return(NULL);
540 i = rmx_newtype(m1->dtype, m2->dtype);
541 if (i)
542 mres->dtype = i;
543 else
544 rmx_addinfo(mres, rmx_mismatch_warn);
545 for (i = mres->nrows; i--; )
546 for (j = mres->ncols; j--; )
547 for (k = mres->ncomp; k--; ) {
548 long double d = 0;
549 for (h = m1->ncols; h--; )
550 d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
551 rmx_lval(mres,i,j,k) = (double)d;
552 }
553 return(mres);
554 }
555
556 /* Element-wise multiplication (or division) of m2 into m1 */
557 int
558 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
559 {
560 int zeroDivides = 0;
561 int i, j, k;
562
563 if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
564 return(0);
565 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
566 return(0);
567 i = rmx_newtype(m1->dtype, m2->dtype);
568 if (i)
569 m1->dtype = i;
570 else
571 rmx_addinfo(m1, rmx_mismatch_warn);
572 for (i = m1->nrows; i--; )
573 for (j = m1->ncols; j--; )
574 if (divide) {
575 double d;
576 if (m2->ncomp == 1) {
577 d = rmx_lval(m2,i,j,0);
578 if (d == 0) {
579 ++zeroDivides;
580 for (k = m1->ncomp; k--; )
581 rmx_lval(m1,i,j,k) = 0;
582 } else {
583 d = 1./d;
584 for (k = m1->ncomp; k--; )
585 rmx_lval(m1,i,j,k) *= d;
586 }
587 } else
588 for (k = m1->ncomp; k--; ) {
589 d = rmx_lval(m2,i,j,k);
590 if (d == 0) {
591 ++zeroDivides;
592 rmx_lval(m1,i,j,k) = 0;
593 } else
594 rmx_lval(m1,i,j,k) /= d;
595 }
596 } else {
597 if (m2->ncomp == 1) {
598 const double d = rmx_lval(m2,i,j,0);
599 for (k = m1->ncomp; k--; )
600 rmx_lval(m1,i,j,k) *= d;
601 } else
602 for (k = m1->ncomp; k--; )
603 rmx_lval(m1,i,j,k) *= rmx_lval(m2,i,j,k);
604 }
605 if (zeroDivides) {
606 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
607 errno = ERANGE;
608 }
609 return(1);
610 }
611
612 /* Sum second matrix into first, applying scale factor beforehand */
613 int
614 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
615 {
616 double *mysf = NULL;
617 int i, j, k;
618
619 if (!msum | !madd ||
620 (msum->nrows != madd->nrows) |
621 (msum->ncols != madd->ncols) |
622 (msum->ncomp != madd->ncomp))
623 return(0);
624 if (!sf) {
625 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
626 if (!mysf)
627 return(0);
628 for (k = msum->ncomp; k--; )
629 mysf[k] = 1;
630 sf = mysf;
631 }
632 i = rmx_newtype(msum->dtype, madd->dtype);
633 if (i)
634 msum->dtype = i;
635 else
636 rmx_addinfo(msum, rmx_mismatch_warn);
637 for (i = msum->nrows; i--; )
638 for (j = msum->ncols; j--; )
639 for (k = msum->ncomp; k--; )
640 rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
641 if (mysf)
642 free(mysf);
643 return(1);
644 }
645
646 /* Scale the given matrix by the indicated scalar component vector */
647 int
648 rmx_scale(RMATRIX *rm, const double sf[])
649 {
650 int i, j, k;
651
652 if (!rm | !sf)
653 return(0);
654 for (i = rm->nrows; i--; )
655 for (j = rm->ncols; j--; )
656 for (k = rm->ncomp; k--; )
657 rmx_lval(rm,i,j,k) *= sf[k];
658
659 if (rm->info)
660 rmx_addinfo(rm, "Applied scalar\n");
661 return(1);
662 }
663
664 /* Allocate new matrix and apply component transformation */
665 RMATRIX *
666 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
667 {
668 int i, j, ks, kd;
669 RMATRIX *dnew;
670
671 if (!msrc | (n <= 0) | !cmat)
672 return(NULL);
673 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
674 if (!dnew)
675 return(NULL);
676 if (msrc->info) {
677 char buf[128];
678 sprintf(buf, "Applied %dx%d component transform\n",
679 dnew->ncomp, msrc->ncomp);
680 rmx_addinfo(dnew, msrc->info);
681 rmx_addinfo(dnew, buf);
682 }
683 dnew->dtype = msrc->dtype;
684 for (i = dnew->nrows; i--; )
685 for (j = dnew->ncols; j--; )
686 for (kd = dnew->ncomp; kd--; ) {
687 double d = 0;
688 for (ks = msrc->ncomp; ks--; )
689 d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
690 rmx_lval(dnew,i,j,kd) = d;
691 }
692 return(dnew);
693 }
694
695 /* Convert a color matrix to newly allocated RMATRIX buffer */
696 RMATRIX *
697 rmx_from_cmatrix(const CMATRIX *cm)
698 {
699 int i, j;
700 RMATRIX *dnew;
701
702 if (!cm)
703 return(NULL);
704 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
705 if (!dnew)
706 return(NULL);
707 dnew->dtype = DTfloat;
708 for (i = dnew->nrows; i--; )
709 for (j = dnew->ncols; j--; ) {
710 const COLORV *cv = cm_lval(cm,i,j);
711 rmx_lval(dnew,i,j,0) = cv[0];
712 rmx_lval(dnew,i,j,1) = cv[1];
713 rmx_lval(dnew,i,j,2) = cv[2];
714 }
715 return(dnew);
716 }
717
718 /* Convert general matrix to newly allocated CMATRIX buffer */
719 CMATRIX *
720 cm_from_rmatrix(const RMATRIX *rm)
721 {
722 int i, j;
723 CMATRIX *cnew;
724
725 if (!rm || rm->ncomp != 3)
726 return(NULL);
727 cnew = cm_alloc(rm->nrows, rm->ncols);
728 if (!cnew)
729 return(NULL);
730 for (i = cnew->nrows; i--; )
731 for (j = cnew->ncols; j--; ) {
732 COLORV *cv = cm_lval(cnew,i,j);
733 cv[0] = (COLORV)rmx_lval(rm,i,j,0);
734 cv[1] = (COLORV)rmx_lval(rm,i,j,1);
735 cv[2] = (COLORV)rmx_lval(rm,i,j,2);
736 }
737 return(cnew);
738 }