ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.34
Committed: Mon Aug 12 20:38:19 2019 UTC (4 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.33: +2 -2 lines
Log Message:
Added warning about divide-by-zero to matrix information header

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.33 2019/08/12 18:15:44 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <fcntl.h>
12 #include <errno.h>
13 #include "rtio.h"
14 #include "platform.h"
15 #include "resolu.h"
16 #include "paths.h"
17 #include "rmatrix.h"
18
19 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 /* Allocate a nr x nc matrix with n components */
22 RMATRIX *
23 rmx_alloc(int nr, int nc, int n)
24 {
25 RMATRIX *dnew;
26
27 if ((nr <= 0) | (nc <= 0) | (n <= 0))
28 return(NULL);
29 dnew = (RMATRIX *)malloc(sizeof(RMATRIX)-sizeof(dnew->mtx) +
30 sizeof(dnew->mtx[0])*(n*nr*nc));
31 if (!dnew)
32 return(NULL);
33 dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n;
34 dnew->dtype = DTdouble;
35 dnew->info = NULL;
36 return(dnew);
37 }
38
39 /* Free a RMATRIX array */
40 void
41 rmx_free(RMATRIX *rm)
42 {
43 if (!rm) return;
44 if (rm->info)
45 free(rm->info);
46 free(rm);
47 }
48
49 /* Resolve data type based on two input types (returns 0 for mismatch) */
50 int
51 rmx_newtype(int dtyp1, int dtyp2)
52 {
53 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
54 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
55 && dtyp1 != dtyp2)
56 return(0);
57 if (dtyp1 < dtyp2)
58 return(dtyp1);
59 return(dtyp2);
60 }
61
62 /* Append header information associated with matrix data */
63 int
64 rmx_addinfo(RMATRIX *rm, const char *info)
65 {
66 if (!rm || !info || !*info)
67 return(0);
68 if (!rm->info) {
69 rm->info = (char *)malloc(strlen(info)+1);
70 if (rm->info) rm->info[0] = '\0';
71 } else
72 rm->info = (char *)realloc(rm->info,
73 strlen(rm->info)+strlen(info)+1);
74 if (!rm->info)
75 return(0);
76 strcat(rm->info, info);
77 return(1);
78 }
79
80 static int
81 get_dminfo(char *s, void *p)
82 {
83 RMATRIX *ip = (RMATRIX *)p;
84 char fmt[MAXFMTLEN];
85 int i;
86
87 if (headidval(fmt, s))
88 return(0);
89 if (!strncmp(s, "NCOMP=", 6)) {
90 ip->ncomp = atoi(s+6);
91 return(0);
92 }
93 if (!strncmp(s, "NROWS=", 6)) {
94 ip->nrows = atoi(s+6);
95 return(0);
96 }
97 if (!strncmp(s, "NCOLS=", 6)) {
98 ip->ncols = atoi(s+6);
99 return(0);
100 }
101 if (!formatval(fmt, s)) {
102 rmx_addinfo(ip, s);
103 return(0);
104 }
105 for (i = 1; i < DTend; i++)
106 if (!strcmp(fmt, cm_fmt_id[i])) {
107 ip->dtype = i;
108 return(0);
109 }
110 return(-1);
111 }
112
113 static int
114 rmx_load_ascii(RMATRIX *rm, FILE *fp)
115 {
116 int i, j, k;
117
118 for (i = 0; i < rm->nrows; i++)
119 for (j = 0; j < rm->ncols; j++)
120 for (k = 0; k < rm->ncomp; k++)
121 if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
122 return(0);
123 return(1);
124 }
125
126 static int
127 rmx_load_float(RMATRIX *rm, FILE *fp)
128 {
129 int i, j, k;
130 float val[100];
131
132 if (rm->ncomp > 100) {
133 fputs("Unsupported # components in rmx_load_float()\n", stderr);
134 exit(1);
135 }
136 for (i = 0; i < rm->nrows; i++)
137 for (j = 0; j < rm->ncols; j++) {
138 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
139 return(0);
140 for (k = rm->ncomp; k--; )
141 rmx_lval(rm,i,j,k) = val[k];
142 }
143 return(1);
144 }
145
146 static int
147 rmx_load_double(RMATRIX *rm, FILE *fp)
148 {
149 int i, j;
150
151 for (i = 0; i < rm->nrows; i++)
152 for (j = 0; j < rm->ncols; j++)
153 if (getbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
154 return(0);
155 return(1);
156 }
157
158 static int
159 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
160 {
161 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
162 int i, j;
163
164 if (!scan)
165 return(0);
166 for (i = 0; i < rm->nrows; i++) {
167 if (freadscan(scan, rm->ncols, fp) < 0) {
168 free(scan);
169 return(0);
170 }
171 for (j = rm->ncols; j--; ) {
172 rmx_lval(rm,i,j,0) = colval(scan[j],RED);
173 rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
174 rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
175 }
176 }
177 free(scan);
178 return(1);
179 }
180
181 /* Load matrix from supported file type */
182 RMATRIX *
183 rmx_load(const char *inspec)
184 {
185 FILE *fp = stdin;
186 RMATRIX dinfo;
187 RMATRIX *dnew;
188
189 if (!inspec) { /* reading from stdin? */
190 inspec = "<stdin>";
191 SET_FILE_BINARY(stdin);
192 } else if (inspec[0] == '!') {
193 if (!(fp = popen(inspec+1, "r")))
194 return(NULL);
195 SET_FILE_BINARY(stdin);
196 } else {
197 const char *sp = inspec; /* check suffix */
198 while (*sp)
199 ++sp;
200 while (sp > inspec && sp[-1] != '.')
201 --sp;
202 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
203 CMATRIX *cm = cm_loadBTDF((char *)inspec);
204 if (!cm)
205 return(NULL);
206 dnew = rmx_from_cmatrix(cm);
207 cm_free(cm);
208 dnew->dtype = DTascii;
209 return(dnew);
210 }
211 /* else open it ourselves */
212 if (!(fp = fopen(inspec, "rb")))
213 return(NULL);
214 }
215 #ifdef getc_unlocked
216 flockfile(fp);
217 #endif
218 dinfo.nrows = dinfo.ncols = dinfo.ncomp = 0;
219 dinfo.dtype = DTascii; /* assumed w/o FORMAT */
220 dinfo.info = NULL;
221 if (getheader(fp, get_dminfo, &dinfo) < 0) {
222 fclose(fp);
223 return(NULL);
224 }
225 if ((dinfo.nrows <= 0) | (dinfo.ncols <= 0)) {
226 if (!fscnresolu(&dinfo.ncols, &dinfo.nrows, fp)) {
227 fclose(fp);
228 return(NULL);
229 }
230 if (dinfo.ncomp <= 0)
231 dinfo.ncomp = 3;
232 else if ((dinfo.dtype == DTrgbe) | (dinfo.dtype == DTxyze) &&
233 dinfo.ncomp != 3) {
234 fclose(fp);
235 return(NULL);
236 }
237 }
238 dnew = rmx_alloc(dinfo.nrows, dinfo.ncols, dinfo.ncomp);
239 if (!dnew) {
240 fclose(fp);
241 return(NULL);
242 }
243 dnew->info = dinfo.info;
244 switch (dinfo.dtype) {
245 case DTascii:
246 SET_FILE_TEXT(stdin);
247 if (!rmx_load_ascii(dnew, fp))
248 goto loaderr;
249 dnew->dtype = DTascii; /* should leave double? */
250 break;
251 case DTfloat:
252 if (!rmx_load_float(dnew, fp))
253 goto loaderr;
254 dnew->dtype = DTfloat;
255 break;
256 case DTdouble:
257 if (!rmx_load_double(dnew, fp))
258 goto loaderr;
259 dnew->dtype = DTdouble;
260 break;
261 case DTrgbe:
262 case DTxyze:
263 if (!rmx_load_rgbe(dnew, fp))
264 goto loaderr;
265 dnew->dtype = dinfo.dtype;
266 break;
267 default:
268 goto loaderr;
269 }
270 if (fp != stdin) {
271 if (inspec[0] == '!')
272 pclose(fp);
273 else
274 fclose(fp);
275 }
276 #ifdef getc_unlocked
277 else
278 funlockfile(fp);
279 #endif
280 return(dnew);
281 loaderr: /* should report error? */
282 if (inspec[0] == '!')
283 pclose(fp);
284 else
285 fclose(fp);
286 rmx_free(dnew);
287 return(NULL);
288 }
289
290 static int
291 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
292 {
293 const char *fmt = (rm->dtype == DTfloat) ? " %.7e" :
294 (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" :
295 " %.15e" ;
296 int i, j, k;
297
298 for (i = 0; i < rm->nrows; i++) {
299 for (j = 0; j < rm->ncols; j++) {
300 for (k = 0; k < rm->ncomp; k++)
301 fprintf(fp, fmt, rmx_lval(rm,i,j,k));
302 fputc('\t', fp);
303 }
304 fputc('\n', fp);
305 }
306 return(1);
307 }
308
309 static int
310 rmx_write_float(const RMATRIX *rm, FILE *fp)
311 {
312 int i, j, k;
313 float val[100];
314
315 if (rm->ncomp > 100) {
316 fputs("Unsupported # components in rmx_write_float()\n", stderr);
317 exit(1);
318 }
319 for (i = 0; i < rm->nrows; i++)
320 for (j = 0; j < rm->ncols; j++) {
321 for (k = rm->ncomp; k--; )
322 val[k] = (float)rmx_lval(rm,i,j,k);
323 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
324 return(0);
325 }
326 return(1);
327 }
328
329 static int
330 rmx_write_double(const RMATRIX *rm, FILE *fp)
331 {
332 int i, j;
333
334 for (i = 0; i < rm->nrows; i++)
335 for (j = 0; j < rm->ncols; j++)
336 if (putbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
337 return(0);
338 return(1);
339 }
340
341 static int
342 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
343 {
344 COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols);
345 int i, j;
346
347 if (!scan)
348 return(0);
349 for (i = 0; i < rm->nrows; i++) {
350 for (j = rm->ncols; j--; )
351 setcolr(scan[j], rmx_lval(rm,i,j,0),
352 rmx_lval(rm,i,j,1),
353 rmx_lval(rm,i,j,2) );
354 if (fwritecolrs(scan, rm->ncols, fp) < 0) {
355 free(scan);
356 return(0);
357 }
358 }
359 free(scan);
360 return(1);
361 }
362
363 /* Write matrix to file type indicated by dtype */
364 int
365 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
366 {
367 RMATRIX *mydm = NULL;
368 int ok = 1;
369
370 if (!rm | !fp)
371 return(0);
372 #ifdef getc_unlocked
373 flockfile(fp);
374 #endif
375 /* complete header */
376 if (rm->info)
377 fputs(rm->info, fp);
378 if (dtype == DTfromHeader)
379 dtype = rm->dtype;
380 else if ((dtype == DTrgbe) & (rm->dtype == DTxyze))
381 dtype = DTxyze;
382 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
383 dtype = DTrgbe;
384 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
385 fprintf(fp, "NROWS=%d\n", rm->nrows);
386 fprintf(fp, "NCOLS=%d\n", rm->ncols);
387 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
388 } else if (rm->ncomp != 3) { /* wrong # components? */
389 double cmtx[3];
390 if (rm->ncomp != 1) /* only convert grayscale */
391 return(0);
392 cmtx[0] = cmtx[1] = cmtx[2] = 1;
393 mydm = rmx_transform(rm, 3, cmtx);
394 if (!mydm)
395 return(0);
396 rm = mydm;
397 }
398 fputformat((char *)cm_fmt_id[dtype], fp);
399 fputc('\n', fp);
400 switch (dtype) { /* write data */
401 case DTascii:
402 ok = rmx_write_ascii(rm, fp);
403 break;
404 case DTfloat:
405 ok = rmx_write_float(rm, fp);
406 break;
407 case DTdouble:
408 ok = rmx_write_double(rm, fp);
409 break;
410 case DTrgbe:
411 case DTxyze:
412 fprtresolu(rm->ncols, rm->nrows, fp);
413 ok = rmx_write_rgbe(rm, fp);
414 break;
415 default:
416 return(0);
417 }
418 ok &= (fflush(fp) == 0);
419 #ifdef getc_unlocked
420 funlockfile(fp);
421 #endif
422 if (mydm)
423 rmx_free(mydm);
424 return(ok);
425 }
426
427 /* Allocate and assign square identity matrix with n components */
428 RMATRIX *
429 rmx_identity(const int dim, const int n)
430 {
431 RMATRIX *rid = rmx_alloc(dim, dim, n);
432 int i, k;
433
434 if (!rid)
435 return(NULL);
436 memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
437 for (i = dim; i--; )
438 for (k = n; k--; )
439 rmx_lval(rid,i,i,k) = 1;
440 return(rid);
441 }
442
443 /* Duplicate the given matrix */
444 RMATRIX *
445 rmx_copy(const RMATRIX *rm)
446 {
447 RMATRIX *dnew;
448
449 if (!rm)
450 return(NULL);
451 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
452 if (!dnew)
453 return(NULL);
454 rmx_addinfo(dnew, rm->info);
455 dnew->dtype = rm->dtype;
456 memcpy(dnew->mtx, rm->mtx,
457 sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
458 return(dnew);
459 }
460
461 /* Allocate and assign transposed matrix */
462 RMATRIX *
463 rmx_transpose(const RMATRIX *rm)
464 {
465 RMATRIX *dnew;
466 int i, j, k;
467
468 if (!rm)
469 return(0);
470 if ((rm->nrows == 1) | (rm->ncols == 1)) {
471 dnew = rmx_copy(rm);
472 if (!dnew)
473 return(NULL);
474 dnew->nrows = rm->ncols;
475 dnew->ncols = rm->nrows;
476 return(dnew);
477 }
478 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
479 if (!dnew)
480 return(NULL);
481 if (rm->info) {
482 rmx_addinfo(dnew, rm->info);
483 rmx_addinfo(dnew, "Transposed rows and columns\n");
484 }
485 dnew->dtype = rm->dtype;
486 for (i = dnew->nrows; i--; )
487 for (j = dnew->ncols; j--; )
488 for (k = dnew->ncomp; k--; )
489 rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
490 return(dnew);
491 }
492
493 /* Multiply (concatenate) two matrices and allocate the result */
494 RMATRIX *
495 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
496 {
497 RMATRIX *mres;
498 int i, j, k, h;
499
500 if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
501 return(NULL);
502 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
503 if (!mres)
504 return(NULL);
505 i = rmx_newtype(m1->dtype, m2->dtype);
506 if (i)
507 mres->dtype = i;
508 else
509 rmx_addinfo(mres, rmx_mismatch_warn);
510 for (i = mres->nrows; i--; )
511 for (j = mres->ncols; j--; )
512 for (k = mres->ncomp; k--; ) {
513 long double d = 0;
514 for (h = m1->ncols; h--; )
515 d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
516 rmx_lval(mres,i,j,k) = (double)d;
517 }
518 return(mres);
519 }
520
521 /* Element-wise multiplication (or division) of m2 into m1 */
522 int
523 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
524 {
525 int zeroDivides = 0;
526 int i, j, k;
527
528 if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
529 return(0);
530 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
531 return(0);
532 i = rmx_newtype(m1->dtype, m2->dtype);
533 if (i)
534 m1->dtype = i;
535 else
536 rmx_addinfo(m1, rmx_mismatch_warn);
537 for (i = m1->nrows; i--; )
538 for (j = m1->ncols; j--; )
539 if (divide) {
540 double d;
541 if (m2->ncomp == 1) {
542 d = rmx_lval(m2,i,j,0);
543 if (d == 0) {
544 ++zeroDivides;
545 for (k = m1->ncomp; k--; )
546 rmx_lval(m1,i,j,k) = 0;
547 } else {
548 d = 1./d;
549 for (k = m1->ncomp; k--; )
550 rmx_lval(m1,i,j,k) *= d;
551 }
552 } else
553 for (k = m1->ncomp; k--; ) {
554 d = rmx_lval(m2,i,j,k);
555 if (d == 0) {
556 ++zeroDivides;
557 rmx_lval(m1,i,j,k) = 0;
558 } else
559 rmx_lval(m1,i,j,k) /= d;
560 }
561 } else {
562 if (m2->ncomp == 1) {
563 const double d = rmx_lval(m2,i,j,0);
564 for (k = m1->ncomp; k--; )
565 rmx_lval(m1,i,j,k) *= d;
566 } else
567 for (k = m1->ncomp; k--; )
568 rmx_lval(m1,i,j,k) *= rmx_lval(m2,i,j,k);
569 }
570 if (zeroDivides) {
571 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
572 errno = ERANGE;
573 }
574 return(1);
575 }
576
577 /* Sum second matrix into first, applying scale factor beforehand */
578 int
579 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
580 {
581 double *mysf = NULL;
582 int i, j, k;
583
584 if (!msum | !madd ||
585 (msum->nrows != madd->nrows) |
586 (msum->ncols != madd->ncols) |
587 (msum->ncomp != madd->ncomp))
588 return(0);
589 if (!sf) {
590 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
591 if (!mysf)
592 return(0);
593 for (k = msum->ncomp; k--; )
594 mysf[k] = 1;
595 sf = mysf;
596 }
597 i = rmx_newtype(msum->dtype, madd->dtype);
598 if (i)
599 msum->dtype = i;
600 else
601 rmx_addinfo(msum, rmx_mismatch_warn);
602 for (i = msum->nrows; i--; )
603 for (j = msum->ncols; j--; )
604 for (k = msum->ncomp; k--; )
605 rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
606 if (mysf)
607 free(mysf);
608 return(1);
609 }
610
611 /* Scale the given matrix by the indicated scalar component vector */
612 int
613 rmx_scale(RMATRIX *rm, const double sf[])
614 {
615 int i, j, k;
616
617 if (!rm | !sf)
618 return(0);
619 for (i = rm->nrows; i--; )
620 for (j = rm->ncols; j--; )
621 for (k = rm->ncomp; k--; )
622 rmx_lval(rm,i,j,k) *= sf[k];
623
624 if (rm->info)
625 rmx_addinfo(rm, "Applied scalar\n");
626 return(1);
627 }
628
629 /* Allocate new matrix and apply component transformation */
630 RMATRIX *
631 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
632 {
633 int i, j, ks, kd;
634 RMATRIX *dnew;
635
636 if (!msrc | (n <= 0) | !cmat)
637 return(NULL);
638 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
639 if (!dnew)
640 return(NULL);
641 if (msrc->info) {
642 char buf[128];
643 sprintf(buf, "Applied %dx%d matrix transform\n",
644 dnew->ncomp, msrc->ncomp);
645 rmx_addinfo(dnew, msrc->info);
646 rmx_addinfo(dnew, buf);
647 }
648 dnew->dtype = msrc->dtype;
649 for (i = dnew->nrows; i--; )
650 for (j = dnew->ncols; j--; )
651 for (kd = dnew->ncomp; kd--; ) {
652 double d = 0;
653 for (ks = msrc->ncomp; ks--; )
654 d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
655 rmx_lval(dnew,i,j,kd) = d;
656 }
657 return(dnew);
658 }
659
660 /* Convert a color matrix to newly allocated RMATRIX buffer */
661 RMATRIX *
662 rmx_from_cmatrix(const CMATRIX *cm)
663 {
664 int i, j;
665 RMATRIX *dnew;
666
667 if (!cm)
668 return(NULL);
669 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
670 if (!dnew)
671 return(NULL);
672 dnew->dtype = DTfloat;
673 for (i = dnew->nrows; i--; )
674 for (j = dnew->ncols; j--; ) {
675 const COLORV *cv = cm_lval(cm,i,j);
676 rmx_lval(dnew,i,j,0) = cv[0];
677 rmx_lval(dnew,i,j,1) = cv[1];
678 rmx_lval(dnew,i,j,2) = cv[2];
679 }
680 return(dnew);
681 }
682
683 /* Convert general matrix to newly allocated CMATRIX buffer */
684 CMATRIX *
685 cm_from_rmatrix(const RMATRIX *rm)
686 {
687 int i, j;
688 CMATRIX *cnew;
689
690 if (!rm || rm->ncomp != 3)
691 return(NULL);
692 cnew = cm_alloc(rm->nrows, rm->ncols);
693 if (!cnew)
694 return(NULL);
695 for (i = cnew->nrows; i--; )
696 for (j = cnew->ncols; j--; ) {
697 COLORV *cv = cm_lval(cnew,i,j);
698 cv[0] = (COLORV)rmx_lval(rm,i,j,0);
699 cv[1] = (COLORV)rmx_lval(rm,i,j,1);
700 cv[2] = (COLORV)rmx_lval(rm,i,j,2);
701 }
702 return(cnew);
703 }