ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.32
Committed: Mon Aug 12 04:46:34 2019 UTC (4 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.31: +3 -1 lines
Log Message:
Forgot to check for no memory

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.31 2019/08/12 04:12:57 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <fcntl.h>
12 #include <errno.h>
13 #include "rtio.h"
14 #include "platform.h"
15 #include "resolu.h"
16 #include "paths.h"
17 #include "rmatrix.h"
18
19 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 /* Allocate a nr x nc matrix with n components */
22 RMATRIX *
23 rmx_alloc(int nr, int nc, int n)
24 {
25 RMATRIX *dnew;
26
27 if ((nr <= 0) | (nc <= 0) | (n <= 0))
28 return(NULL);
29 dnew = (RMATRIX *)malloc(sizeof(RMATRIX)-sizeof(dnew->mtx) +
30 sizeof(dnew->mtx[0])*(n*nr*nc));
31 if (dnew == NULL)
32 return(NULL);
33 dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n;
34 dnew->dtype = DTdouble;
35 dnew->info = NULL;
36 return(dnew);
37 }
38
39 /* Free a RMATRIX array */
40 void
41 rmx_free(RMATRIX *rm)
42 {
43 if (!rm) return;
44 if (rm->info)
45 free(rm->info);
46 free(rm);
47 }
48
49 /* Resolve data type based on two input types (returns 0 for mismatch) */
50 int
51 rmx_newtype(int dtyp1, int dtyp2)
52 {
53 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
54 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
55 && dtyp1 != dtyp2)
56 return(0);
57 if (dtyp1 < dtyp2)
58 return(dtyp1);
59 return(dtyp2);
60 }
61
62 /* Append header information associated with matrix data */
63 int
64 rmx_addinfo(RMATRIX *rm, const char *info)
65 {
66 if (!info || !*info)
67 return(0);
68 if (!rm->info) {
69 rm->info = (char *)malloc(strlen(info)+1);
70 if (rm->info) rm->info[0] = '\0';
71 } else
72 rm->info = (char *)realloc(rm->info,
73 strlen(rm->info)+strlen(info)+1);
74 if (!rm->info)
75 return(0);
76 strcat(rm->info, info);
77 return(1);
78 }
79
80 static int
81 get_dminfo(char *s, void *p)
82 {
83 RMATRIX *ip = (RMATRIX *)p;
84 char fmt[MAXFMTLEN];
85 int i;
86
87 if (headidval(fmt, s))
88 return(0);
89 if (!strncmp(s, "NCOMP=", 6)) {
90 ip->ncomp = atoi(s+6);
91 return(0);
92 }
93 if (!strncmp(s, "NROWS=", 6)) {
94 ip->nrows = atoi(s+6);
95 return(0);
96 }
97 if (!strncmp(s, "NCOLS=", 6)) {
98 ip->ncols = atoi(s+6);
99 return(0);
100 }
101 if (!formatval(fmt, s)) {
102 rmx_addinfo(ip, s);
103 return(0);
104 }
105 for (i = 1; i < DTend; i++)
106 if (!strcmp(fmt, cm_fmt_id[i])) {
107 ip->dtype = i;
108 return(0);
109 }
110 return(-1);
111 }
112
113 static int
114 rmx_load_ascii(RMATRIX *rm, FILE *fp)
115 {
116 int i, j, k;
117
118 for (i = 0; i < rm->nrows; i++)
119 for (j = 0; j < rm->ncols; j++)
120 for (k = 0; k < rm->ncomp; k++)
121 if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
122 return(0);
123 return(1);
124 }
125
126 static int
127 rmx_load_float(RMATRIX *rm, FILE *fp)
128 {
129 int i, j, k;
130 float val[100];
131
132 if (rm->ncomp > 100) {
133 fputs("Unsupported # components in rmx_load_float()\n", stderr);
134 exit(1);
135 }
136 for (i = 0; i < rm->nrows; i++)
137 for (j = 0; j < rm->ncols; j++) {
138 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
139 return(0);
140 for (k = rm->ncomp; k--; )
141 rmx_lval(rm,i,j,k) = val[k];
142 }
143 return(1);
144 }
145
146 static int
147 rmx_load_double(RMATRIX *rm, FILE *fp)
148 {
149 int i, j;
150
151 for (i = 0; i < rm->nrows; i++)
152 for (j = 0; j < rm->ncols; j++)
153 if (getbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
154 return(0);
155 return(1);
156 }
157
158 static int
159 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
160 {
161 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
162 int i, j;
163
164 if (scan == NULL)
165 return(0);
166 for (i = 0; i < rm->nrows; i++) {
167 if (freadscan(scan, rm->ncols, fp) < 0) {
168 free(scan);
169 return(0);
170 }
171 for (j = rm->ncols; j--; ) {
172 rmx_lval(rm,i,j,0) = colval(scan[j],RED);
173 rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
174 rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
175 }
176 }
177 free(scan);
178 return(1);
179 }
180
181 /* Load matrix from supported file type */
182 RMATRIX *
183 rmx_load(const char *inspec)
184 {
185 FILE *fp = stdin;
186 RMATRIX dinfo;
187 RMATRIX *dnew;
188
189 if (inspec == NULL) { /* reading from stdin? */
190 inspec = "<stdin>";
191 SET_FILE_BINARY(stdin);
192 } else if (inspec[0] == '!') {
193 if ((fp = popen(inspec+1, "r")) == NULL)
194 return(NULL);
195 SET_FILE_BINARY(stdin);
196 } else {
197 const char *sp = inspec; /* check suffix */
198 while (*sp)
199 ++sp;
200 while (sp > inspec && sp[-1] != '.')
201 --sp;
202 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
203 CMATRIX *cm = cm_loadBTDF((char *)inspec);
204 if (cm == NULL)
205 return(NULL);
206 dnew = rmx_from_cmatrix(cm);
207 cm_free(cm);
208 dnew->dtype = DTascii;
209 return(dnew);
210 }
211 /* else open it ourselves */
212 if ((fp = fopen(inspec, "rb")) == NULL)
213 return(NULL);
214 }
215 #ifdef getc_unlocked
216 flockfile(fp);
217 #endif
218 dinfo.nrows = dinfo.ncols = dinfo.ncomp = 0;
219 dinfo.dtype = DTascii; /* assumed w/o FORMAT */
220 dinfo.info = NULL;
221 if (getheader(fp, get_dminfo, &dinfo) < 0) {
222 fclose(fp);
223 return(NULL);
224 }
225 if ((dinfo.nrows <= 0) | (dinfo.ncols <= 0)) {
226 if (!fscnresolu(&dinfo.ncols, &dinfo.nrows, fp)) {
227 fclose(fp);
228 return(NULL);
229 }
230 if (dinfo.ncomp <= 0)
231 dinfo.ncomp = 3;
232 else if ((dinfo.dtype == DTrgbe) | (dinfo.dtype == DTxyze) &&
233 dinfo.ncomp != 3) {
234 fclose(fp);
235 return(NULL);
236 }
237 }
238 dnew = rmx_alloc(dinfo.nrows, dinfo.ncols, dinfo.ncomp);
239 if (dnew == NULL) {
240 fclose(fp);
241 return(NULL);
242 }
243 dnew->info = dinfo.info;
244 switch (dinfo.dtype) {
245 case DTascii:
246 SET_FILE_TEXT(stdin);
247 if (!rmx_load_ascii(dnew, fp))
248 goto loaderr;
249 dnew->dtype = DTascii; /* should leave double? */
250 break;
251 case DTfloat:
252 if (!rmx_load_float(dnew, fp))
253 goto loaderr;
254 dnew->dtype = DTfloat;
255 break;
256 case DTdouble:
257 if (!rmx_load_double(dnew, fp))
258 goto loaderr;
259 dnew->dtype = DTdouble;
260 break;
261 case DTrgbe:
262 case DTxyze:
263 if (!rmx_load_rgbe(dnew, fp))
264 goto loaderr;
265 dnew->dtype = dinfo.dtype;
266 break;
267 default:
268 goto loaderr;
269 }
270 if (fp != stdin) {
271 if (inspec[0] == '!')
272 pclose(fp);
273 else
274 fclose(fp);
275 }
276 #ifdef getc_unlocked
277 else
278 funlockfile(fp);
279 #endif
280 return(dnew);
281 loaderr: /* should report error? */
282 if (inspec[0] == '!')
283 pclose(fp);
284 else
285 fclose(fp);
286 rmx_free(dnew);
287 return(NULL);
288 }
289
290 static int
291 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
292 {
293 const char *fmt = (rm->dtype == DTfloat) ? " %.7e" :
294 (rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" :
295 " %.15e" ;
296 int i, j, k;
297
298 for (i = 0; i < rm->nrows; i++) {
299 for (j = 0; j < rm->ncols; j++) {
300 for (k = 0; k < rm->ncomp; k++)
301 fprintf(fp, fmt, rmx_lval(rm,i,j,k));
302 fputc('\t', fp);
303 }
304 fputc('\n', fp);
305 }
306 return(1);
307 }
308
309 static int
310 rmx_write_float(const RMATRIX *rm, FILE *fp)
311 {
312 int i, j, k;
313 float val[100];
314
315 if (rm->ncomp > 100) {
316 fputs("Unsupported # components in rmx_write_float()\n", stderr);
317 exit(1);
318 }
319 for (i = 0; i < rm->nrows; i++)
320 for (j = 0; j < rm->ncols; j++) {
321 for (k = rm->ncomp; k--; )
322 val[k] = (float)rmx_lval(rm,i,j,k);
323 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
324 return(0);
325 }
326 return(1);
327 }
328
329 static int
330 rmx_write_double(const RMATRIX *rm, FILE *fp)
331 {
332 int i, j;
333
334 for (i = 0; i < rm->nrows; i++)
335 for (j = 0; j < rm->ncols; j++)
336 if (putbinary(&rmx_lval(rm,i,j,0), sizeof(double), rm->ncomp, fp) != rm->ncomp)
337 return(0);
338 return(1);
339 }
340
341 static int
342 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
343 {
344 COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols);
345 int i, j;
346
347 if (scan == NULL)
348 return(0);
349 for (i = 0; i < rm->nrows; i++) {
350 for (j = rm->ncols; j--; )
351 setcolr(scan[j], rmx_lval(rm,i,j,0),
352 rmx_lval(rm,i,j,1),
353 rmx_lval(rm,i,j,2) );
354 if (fwritecolrs(scan, rm->ncols, fp) < 0) {
355 free(scan);
356 return(0);
357 }
358 }
359 free(scan);
360 return(1);
361 }
362
363 /* Write matrix to file type indicated by dtype */
364 int
365 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
366 {
367 RMATRIX *mydm = NULL;
368 int ok = 1;
369
370 if ((rm == NULL) | (fp == NULL))
371 return(0);
372 #ifdef getc_unlocked
373 flockfile(fp);
374 #endif
375 /* complete header */
376 if (rm->info)
377 fputs(rm->info, fp);
378 if (dtype == DTfromHeader)
379 dtype = rm->dtype;
380 else if ((dtype == DTrgbe) & (rm->dtype == DTxyze))
381 dtype = DTxyze;
382 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
383 dtype = DTrgbe;
384 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
385 fprintf(fp, "NROWS=%d\n", rm->nrows);
386 fprintf(fp, "NCOLS=%d\n", rm->ncols);
387 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
388 } else if (rm->ncomp != 3) { /* wrong # components? */
389 double cmtx[3];
390 if (rm->ncomp != 1) /* only convert grayscale */
391 return(0);
392 cmtx[0] = cmtx[1] = cmtx[2] = 1;
393 mydm = rmx_transform(rm, 3, cmtx);
394 if (mydm == NULL)
395 return(0);
396 rm = mydm;
397 }
398 fputformat((char *)cm_fmt_id[dtype], fp);
399 fputc('\n', fp);
400 switch (dtype) { /* write data */
401 case DTascii:
402 ok = rmx_write_ascii(rm, fp);
403 break;
404 case DTfloat:
405 ok = rmx_write_float(rm, fp);
406 break;
407 case DTdouble:
408 ok = rmx_write_double(rm, fp);
409 break;
410 case DTrgbe:
411 case DTxyze:
412 fprtresolu(rm->ncols, rm->nrows, fp);
413 ok = rmx_write_rgbe(rm, fp);
414 break;
415 default:
416 return(0);
417 }
418 ok &= (fflush(fp) == 0);
419 #ifdef getc_unlocked
420 funlockfile(fp);
421 #endif
422 rmx_free(mydm);
423 return(ok);
424 }
425
426 /* Allocate and assign square identity matrix with n components */
427 RMATRIX *
428 rmx_identity(const int dim, const int n)
429 {
430 RMATRIX *rid = rmx_alloc(dim, dim, n);
431 int i, k;
432
433 if (rid == NULL)
434 return(NULL);
435 memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
436 for (i = dim; i--; )
437 for (k = n; k--; )
438 rmx_lval(rid,i,i,k) = 1;
439 return(rid);
440 }
441
442 /* Duplicate the given matrix */
443 RMATRIX *
444 rmx_copy(const RMATRIX *rm)
445 {
446 RMATRIX *dnew;
447
448 if (rm == NULL)
449 return(NULL);
450 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
451 if (dnew == NULL)
452 return(NULL);
453 rmx_addinfo(dnew, rm->info);
454 dnew->dtype = rm->dtype;
455 memcpy(dnew->mtx, rm->mtx,
456 sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
457 return(dnew);
458 }
459
460 /* Allocate and assign transposed matrix */
461 RMATRIX *
462 rmx_transpose(const RMATRIX *rm)
463 {
464 RMATRIX *dnew;
465 int i, j, k;
466
467 if (rm == NULL)
468 return(0);
469 if ((rm->nrows == 1) | (rm->ncols == 1)) {
470 dnew = rmx_copy(rm);
471 if (dnew == NULL)
472 return(NULL);
473 dnew->nrows = rm->ncols;
474 dnew->ncols = rm->nrows;
475 return(dnew);
476 }
477 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
478 if (dnew == NULL)
479 return(NULL);
480 if (rm->info) {
481 rmx_addinfo(dnew, rm->info);
482 rmx_addinfo(dnew, "Transposed rows and columns\n");
483 }
484 dnew->dtype = rm->dtype;
485 for (i = dnew->nrows; i--; )
486 for (j = dnew->ncols; j--; )
487 for (k = dnew->ncomp; k--; )
488 rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
489 return(dnew);
490 }
491
492 /* Multiply (concatenate) two matrices and allocate the result */
493 RMATRIX *
494 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
495 {
496 RMATRIX *mres;
497 int i, j, k, h;
498
499 if ((m1 == NULL) | (m2 == NULL) ||
500 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
501 return(NULL);
502 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
503 if (mres == NULL)
504 return(NULL);
505 i = rmx_newtype(m1->dtype, m2->dtype);
506 if (i)
507 mres->dtype = i;
508 else
509 rmx_addinfo(mres, rmx_mismatch_warn);
510 for (i = mres->nrows; i--; )
511 for (j = mres->ncols; j--; )
512 for (k = mres->ncomp; k--; ) {
513 long double d = 0;
514 for (h = m1->ncols; h--; )
515 d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
516 rmx_lval(mres,i,j,k) = (double)d;
517 }
518 return(mres);
519 }
520
521 /* Element-wise multiplication (or division) of m2 into m1 */
522 int
523 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
524 {
525 int zeroDivides = 0;
526 int i, j, k;
527
528 if ((m1 == NULL) | (m2 == NULL) ||
529 (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
530 return(0);
531 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
532 return(0);
533 i = rmx_newtype(m1->dtype, m2->dtype);
534 if (i)
535 m1->dtype = i;
536 else
537 rmx_addinfo(m1, rmx_mismatch_warn);
538 for (i = m1->nrows; i--; )
539 for (j = m1->ncols; j--; )
540 if (divide) {
541 double d;
542 if (m2->ncomp == 1) {
543 d = rmx_lval(m2,i,j,0);
544 if (d == 0) {
545 ++zeroDivides;
546 for (k = m1->ncomp; k--; )
547 rmx_lval(m1,i,j,k) = 0;
548 } else {
549 d = 1./d;
550 for (k = m1->ncomp; k--; )
551 rmx_lval(m1,i,j,k) *= d;
552 }
553 } else
554 for (k = m1->ncomp; k--; ) {
555 d = rmx_lval(m2,i,j,k);
556 if (d == 0) {
557 ++zeroDivides;
558 rmx_lval(m1,i,j,k) = 0;
559 } else
560 rmx_lval(m1,i,j,k) /= d;
561 }
562 } else {
563 if (m2->ncomp == 1) {
564 const double d = rmx_lval(m2,i,j,0);
565 for (k = m1->ncomp; k--; )
566 rmx_lval(m1,i,j,k) *= d;
567 } else
568 for (k = m1->ncomp; k--; )
569 rmx_lval(m1,i,j,k) *= rmx_lval(m2,i,j,k);
570 }
571 if (zeroDivides) {
572 fputs("Divide by zero in rmx_elemult()\n", stderr);
573 errno = ERANGE;
574 }
575 return(1);
576 }
577
578 /* Sum second matrix into first, applying scale factor beforehand */
579 int
580 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
581 {
582 double *mysf = NULL;
583 int i, j, k;
584
585 if ((msum == NULL) | (madd == NULL) ||
586 (msum->nrows != madd->nrows) |
587 (msum->ncols != madd->ncols) |
588 (msum->ncomp != madd->ncomp))
589 return(0);
590 if (sf == NULL) {
591 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
592 if (mysf == NULL)
593 return(0);
594 for (k = msum->ncomp; k--; )
595 mysf[k] = 1;
596 sf = mysf;
597 }
598 i = rmx_newtype(msum->dtype, madd->dtype);
599 if (i)
600 msum->dtype = i;
601 else
602 rmx_addinfo(msum, rmx_mismatch_warn);
603 for (i = msum->nrows; i--; )
604 for (j = msum->ncols; j--; )
605 for (k = msum->ncomp; k--; )
606 rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
607
608 free(mysf);
609 return(1);
610 }
611
612 /* Scale the given matrix by the indicated scalar component vector */
613 int
614 rmx_scale(RMATRIX *rm, const double sf[])
615 {
616 int i, j, k;
617
618 if ((rm == NULL) | (sf == NULL))
619 return(0);
620 for (i = rm->nrows; i--; )
621 for (j = rm->ncols; j--; )
622 for (k = rm->ncomp; k--; )
623 rmx_lval(rm,i,j,k) *= sf[k];
624
625 if (rm->info)
626 rmx_addinfo(rm, "Applied scalar\n");
627 return(1);
628 }
629
630 /* Allocate new matrix and apply component transformation */
631 RMATRIX *
632 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
633 {
634 int i, j, ks, kd;
635 RMATRIX *dnew;
636
637 if ((msrc == NULL) | (n <= 0) | (cmat == NULL))
638 return(NULL);
639 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
640 if (dnew == NULL)
641 return(NULL);
642 if (msrc->info) {
643 char buf[128];
644 sprintf(buf, "Applied %dx%d matrix transform\n",
645 dnew->ncomp, msrc->ncomp);
646 rmx_addinfo(dnew, msrc->info);
647 rmx_addinfo(dnew, buf);
648 }
649 dnew->dtype = msrc->dtype;
650 for (i = dnew->nrows; i--; )
651 for (j = dnew->ncols; j--; )
652 for (kd = dnew->ncomp; kd--; ) {
653 double d = 0;
654 for (ks = msrc->ncomp; ks--; )
655 d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
656 rmx_lval(dnew,i,j,kd) = d;
657 }
658 return(dnew);
659 }
660
661 /* Convert a color matrix to newly allocated RMATRIX buffer */
662 RMATRIX *
663 rmx_from_cmatrix(const CMATRIX *cm)
664 {
665 int i, j;
666 RMATRIX *dnew;
667
668 if (cm == NULL)
669 return(NULL);
670 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
671 if (dnew == NULL)
672 return(NULL);
673 dnew->dtype = DTfloat;
674 for (i = dnew->nrows; i--; )
675 for (j = dnew->ncols; j--; ) {
676 const COLORV *cv = cm_lval(cm,i,j);
677 rmx_lval(dnew,i,j,0) = cv[0];
678 rmx_lval(dnew,i,j,1) = cv[1];
679 rmx_lval(dnew,i,j,2) = cv[2];
680 }
681 return(dnew);
682 }
683
684 /* Convert general matrix to newly allocated CMATRIX buffer */
685 CMATRIX *
686 cm_from_rmatrix(const RMATRIX *rm)
687 {
688 int i, j;
689 CMATRIX *cnew;
690
691 if (rm == NULL || rm->ncomp != 3)
692 return(NULL);
693 cnew = cm_alloc(rm->nrows, rm->ncols);
694 if (cnew == NULL)
695 return(NULL);
696 for (i = cnew->nrows; i--; )
697 for (j = cnew->ncols; j--; ) {
698 COLORV *cv = cm_lval(cnew,i,j);
699 cv[0] = (COLORV)rmx_lval(rm,i,j,0);
700 cv[1] = (COLORV)rmx_lval(rm,i,j,1);
701 cv[2] = (COLORV)rmx_lval(rm,i,j,2);
702 }
703 return(cnew);
704 }