ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.25
Committed: Mon Aug 28 15:59:46 2017 UTC (6 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.24: +59 -1 lines
Log Message:
Added element-wise multiplication and division to rmtxop command

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.24 2016/08/30 15:11:22 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <fcntl.h>
12 #include <errno.h>
13 #include "rtio.h"
14 #include "platform.h"
15 #include "resolu.h"
16 #include "paths.h"
17 #include "rmatrix.h"
18
19 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 /* Allocate a nr x nc matrix with n components */
22 RMATRIX *
23 rmx_alloc(int nr, int nc, int n)
24 {
25 RMATRIX *dnew;
26
27 if ((nr <= 0) | (nc <= 0) | (n <= 0))
28 return(NULL);
29 dnew = (RMATRIX *)malloc(sizeof(RMATRIX)-sizeof(dnew->mtx) +
30 sizeof(dnew->mtx[0])*(n*nr*nc));
31 if (dnew == NULL)
32 return(NULL);
33 dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n;
34 dnew->dtype = DTdouble;
35 dnew->info = NULL;
36 return(dnew);
37 }
38
39 /* Free a RMATRIX array */
40 void
41 rmx_free(RMATRIX *rm)
42 {
43 if (!rm) return;
44 if (rm->info)
45 free(rm->info);
46 free(rm);
47 }
48
49 /* Resolve data type based on two input types (returns 0 for mismatch) */
50 int
51 rmx_newtype(int dtyp1, int dtyp2)
52 {
53 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
54 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
55 && dtyp1 != dtyp2)
56 return(0);
57 if (dtyp1 < dtyp2)
58 return(dtyp1);
59 return(dtyp2);
60 }
61
62 /* Append header information associated with matrix data */
63 int
64 rmx_addinfo(RMATRIX *rm, const char *info)
65 {
66 if (!info || !*info)
67 return(0);
68 if (!rm->info) {
69 rm->info = (char *)malloc(strlen(info)+1);
70 if (rm->info) rm->info[0] = '\0';
71 } else
72 rm->info = (char *)realloc(rm->info,
73 strlen(rm->info)+strlen(info)+1);
74 if (!rm->info)
75 return(0);
76 strcat(rm->info, info);
77 return(1);
78 }
79
80 static int
81 get_dminfo(char *s, void *p)
82 {
83 RMATRIX *ip = (RMATRIX *)p;
84 char fmt[64];
85 int i;
86
87 if (headidval(fmt, s))
88 return(0);
89 if (!strncmp(s, "NCOMP=", 6)) {
90 ip->ncomp = atoi(s+6);
91 return(0);
92 }
93 if (!strncmp(s, "NROWS=", 6)) {
94 ip->nrows = atoi(s+6);
95 return(0);
96 }
97 if (!strncmp(s, "NCOLS=", 6)) {
98 ip->ncols = atoi(s+6);
99 return(0);
100 }
101 if (!formatval(fmt, s)) {
102 rmx_addinfo(ip, s);
103 return(0);
104 }
105 for (i = 1; i < DTend; i++)
106 if (!strcmp(fmt, cm_fmt_id[i])) {
107 ip->dtype = i;
108 return(0);
109 }
110 return(-1);
111 }
112
113 static int
114 rmx_load_ascii(RMATRIX *rm, FILE *fp)
115 {
116 int i, j, k;
117
118 for (i = 0; i < rm->nrows; i++)
119 for (j = 0; j < rm->ncols; j++)
120 for (k = 0; k < rm->ncomp; k++)
121 if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
122 return(0);
123 return(1);
124 }
125
126 static int
127 rmx_load_float(RMATRIX *rm, FILE *fp)
128 {
129 int i, j, k;
130 float val[100];
131
132 if (rm->ncomp > 100) {
133 fputs("Unsupported # components in rmx_load_float()\n", stderr);
134 exit(1);
135 }
136 for (i = 0; i < rm->nrows; i++)
137 for (j = 0; j < rm->ncols; j++) {
138 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
139 return(0);
140 for (k = rm->ncomp; k--; )
141 rmx_lval(rm,i,j,k) = val[k];
142 }
143 return(1);
144 }
145
146 static int
147 rmx_load_double(RMATRIX *rm, FILE *fp)
148 {
149 int i, j, k;
150 double val[100];
151
152 if (rm->ncomp > 100) {
153 fputs("Unsupported # components in rmx_load_double()\n", stderr);
154 exit(1);
155 }
156 for (i = 0; i < rm->nrows; i++)
157 for (j = 0; j < rm->ncols; j++) {
158 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
159 return(0);
160 for (k = rm->ncomp; k--; )
161 rmx_lval(rm,i,j,k) = val[k];
162 }
163 return(1);
164 }
165
166 static int
167 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
168 {
169 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
170 int i, j;
171
172 if (scan == NULL)
173 return(0);
174 for (i = 0; i < rm->nrows; i++) {
175 if (freadscan(scan, rm->ncols, fp) < 0) {
176 free(scan);
177 return(0);
178 }
179 for (j = rm->ncols; j--; ) {
180 rmx_lval(rm,i,j,0) = colval(scan[j],RED);
181 rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
182 rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
183 }
184 }
185 free(scan);
186 return(1);
187 }
188
189 /* Load matrix from supported file type */
190 RMATRIX *
191 rmx_load(const char *inspec)
192 {
193 FILE *fp = stdin;
194 RMATRIX dinfo;
195 RMATRIX *dnew;
196
197 if (inspec == NULL) { /* reading from stdin? */
198 inspec = "<stdin>";
199 SET_FILE_BINARY(stdin);
200 } else if (inspec[0] == '!') {
201 if ((fp = popen(inspec+1, "r")) == NULL)
202 return(NULL);
203 SET_FILE_BINARY(stdin);
204 } else {
205 const char *sp = inspec; /* check suffix */
206 while (*sp)
207 ++sp;
208 while (sp > inspec && sp[-1] != '.')
209 --sp;
210 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
211 CMATRIX *cm = cm_loadBTDF((char *)inspec);
212 if (cm == NULL)
213 return(NULL);
214 dnew = rmx_from_cmatrix(cm);
215 cm_free(cm);
216 dnew->dtype = DTascii;
217 return(dnew);
218 }
219 /* else open it ourselves */
220 if ((fp = fopen(inspec, "rb")) == NULL)
221 return(NULL);
222 }
223 #ifdef getc_unlocked
224 flockfile(fp);
225 #endif
226 dinfo.nrows = dinfo.ncols = dinfo.ncomp = 0;
227 dinfo.dtype = DTascii; /* assumed w/o FORMAT */
228 dinfo.info = NULL;
229 if (getheader(fp, get_dminfo, &dinfo) < 0) {
230 fclose(fp);
231 return(NULL);
232 }
233 if ((dinfo.nrows <= 0) | (dinfo.ncols <= 0)) {
234 if (!fscnresolu(&dinfo.ncols, &dinfo.nrows, fp)) {
235 fclose(fp);
236 return(NULL);
237 }
238 if (dinfo.ncomp <= 0)
239 dinfo.ncomp = 3;
240 else if ((dinfo.dtype == DTrgbe) | (dinfo.dtype == DTxyze) &&
241 dinfo.ncomp != 3) {
242 fclose(fp);
243 return(NULL);
244 }
245 }
246 dnew = rmx_alloc(dinfo.nrows, dinfo.ncols, dinfo.ncomp);
247 if (dnew == NULL) {
248 fclose(fp);
249 return(NULL);
250 }
251 dnew->info = dinfo.info;
252 switch (dinfo.dtype) {
253 case DTascii:
254 SET_FILE_TEXT(stdin);
255 if (!rmx_load_ascii(dnew, fp))
256 goto loaderr;
257 dnew->dtype = DTascii; /* should leave double? */
258 break;
259 case DTfloat:
260 if (!rmx_load_float(dnew, fp))
261 goto loaderr;
262 dnew->dtype = DTfloat;
263 break;
264 case DTdouble:
265 if (!rmx_load_double(dnew, fp))
266 goto loaderr;
267 dnew->dtype = DTdouble;
268 break;
269 case DTrgbe:
270 case DTxyze:
271 if (!rmx_load_rgbe(dnew, fp))
272 goto loaderr;
273 dnew->dtype = dinfo.dtype;
274 break;
275 default:
276 goto loaderr;
277 }
278 if (fp != stdin) {
279 if (inspec[0] == '!')
280 pclose(fp);
281 else
282 fclose(fp);
283 }
284 #ifdef getc_unlocked
285 else
286 funlockfile(fp);
287 #endif
288 return(dnew);
289 loaderr: /* should report error? */
290 if (inspec[0] == '!')
291 pclose(fp);
292 else
293 fclose(fp);
294 rmx_free(dnew);
295 return(NULL);
296 }
297
298 static int
299 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
300 {
301 int i, j, k;
302
303 for (i = 0; i < rm->nrows; i++) {
304 for (j = 0; j < rm->ncols; j++) {
305 for (k = 0; k < rm->ncomp; k++)
306 fprintf(fp, " %.15e", rmx_lval(rm,i,j,k));
307 fputc('\t', fp);
308 }
309 fputc('\n', fp);
310 }
311 return(1);
312 }
313
314 static int
315 rmx_write_float(const RMATRIX *rm, FILE *fp)
316 {
317 int i, j, k;
318 float val[100];
319
320 if (rm->ncomp > 100) {
321 fputs("Unsupported # components in rmx_write_float()\n", stderr);
322 exit(1);
323 }
324 for (i = 0; i < rm->nrows; i++)
325 for (j = 0; j < rm->ncols; j++) {
326 for (k = rm->ncomp; k--; )
327 val[k] = (float)rmx_lval(rm,i,j,k);
328 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
329 return(0);
330 }
331 return(1);
332 }
333
334 static int
335 rmx_write_double(const RMATRIX *rm, FILE *fp)
336 {
337 int i, j, k;
338 double val[100];
339
340 if (rm->ncomp > 100) {
341 fputs("Unsupported # components in rmx_write_double()\n", stderr);
342 exit(1);
343 }
344 for (i = 0; i < rm->nrows; i++)
345 for (j = 0; j < rm->ncols; j++) {
346 for (k = rm->ncomp; k--; )
347 val[k] = rmx_lval(rm,i,j,k);
348 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
349 return(0);
350 }
351 return(1);
352 }
353
354 static int
355 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
356 {
357 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
358 int i, j;
359
360 if (scan == NULL)
361 return(0);
362 for (i = 0; i < rm->nrows; i++) {
363 for (j = rm->ncols; j--; )
364 setcolor(scan[j], rmx_lval(rm,i,j,0),
365 rmx_lval(rm,i,j,1),
366 rmx_lval(rm,i,j,2) );
367 if (fwritescan(scan, rm->ncols, fp) < 0) {
368 free(scan);
369 return(0);
370 }
371 }
372 free(scan);
373 return(1);
374 }
375
376 /* Write matrix to file type indicated by dtype */
377 int
378 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
379 {
380 RMATRIX *mydm = NULL;
381 int ok = 1;
382
383 if ((rm == NULL) | (fp == NULL))
384 return(0);
385 #ifdef getc_unlocked
386 flockfile(fp);
387 #endif
388 /* complete header */
389 if (rm->info)
390 fputs(rm->info, fp);
391 if (dtype == DTfromHeader)
392 dtype = rm->dtype;
393 else if ((dtype == DTrgbe) & (rm->dtype == DTxyze))
394 dtype = DTxyze;
395 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
396 dtype = DTrgbe;
397 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
398 fprintf(fp, "NROWS=%d\n", rm->nrows);
399 fprintf(fp, "NCOLS=%d\n", rm->ncols);
400 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
401 } else if (rm->ncomp != 3) { /* wrong # components? */
402 double cmtx[3];
403 if (rm->ncomp != 1) /* only convert grayscale */
404 return(0);
405 cmtx[0] = cmtx[1] = cmtx[2] = 1;
406 mydm = rmx_transform(rm, 3, cmtx);
407 if (mydm == NULL)
408 return(0);
409 rm = mydm;
410 }
411 fputformat((char *)cm_fmt_id[dtype], fp);
412 fputc('\n', fp);
413 switch (dtype) { /* write data */
414 case DTascii:
415 ok = rmx_write_ascii(rm, fp);
416 break;
417 case DTfloat:
418 ok = rmx_write_float(rm, fp);
419 break;
420 case DTdouble:
421 ok = rmx_write_double(rm, fp);
422 break;
423 case DTrgbe:
424 case DTxyze:
425 fprtresolu(rm->ncols, rm->nrows, fp);
426 ok = rmx_write_rgbe(rm, fp);
427 break;
428 default:
429 return(0);
430 }
431 ok &= (fflush(fp) == 0);
432 #ifdef getc_unlocked
433 funlockfile(fp);
434 #endif
435 rmx_free(mydm);
436 return(ok);
437 }
438
439 /* Allocate and assign square identity matrix with n components */
440 RMATRIX *
441 rmx_identity(const int dim, const int n)
442 {
443 RMATRIX *rid = rmx_alloc(dim, dim, n);
444 int i, k;
445
446 if (rid == NULL)
447 return(NULL);
448 memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
449 for (i = dim; i--; )
450 for (k = n; k--; )
451 rmx_lval(rid,i,i,k) = 1;
452 return(rid);
453 }
454
455 /* Duplicate the given matrix */
456 RMATRIX *
457 rmx_copy(const RMATRIX *rm)
458 {
459 RMATRIX *dnew;
460
461 if (rm == NULL)
462 return(NULL);
463 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
464 if (dnew == NULL)
465 return(NULL);
466 rmx_addinfo(dnew, rm->info);
467 dnew->dtype = rm->dtype;
468 memcpy(dnew->mtx, rm->mtx,
469 sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
470 return(dnew);
471 }
472
473 /* Allocate and assign transposed matrix */
474 RMATRIX *
475 rmx_transpose(const RMATRIX *rm)
476 {
477 RMATRIX *dnew;
478 int i, j, k;
479
480 if (rm == NULL)
481 return(0);
482 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
483 if (dnew == NULL)
484 return(NULL);
485 if (rm->info) {
486 rmx_addinfo(dnew, rm->info);
487 rmx_addinfo(dnew, "Transposed rows and columns\n");
488 }
489 dnew->dtype = rm->dtype;
490 for (i = dnew->nrows; i--; )
491 for (j = dnew->ncols; j--; )
492 for (k = dnew->ncomp; k--; )
493 rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
494 return(dnew);
495 }
496
497 /* Multiply (concatenate) two matrices and allocate the result */
498 RMATRIX *
499 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
500 {
501 RMATRIX *mres;
502 int i, j, k, h;
503
504 if ((m1 == NULL) | (m2 == NULL) ||
505 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
506 return(NULL);
507 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
508 if (mres == NULL)
509 return(NULL);
510 i = rmx_newtype(m1->dtype, m2->dtype);
511 if (i)
512 mres->dtype = i;
513 else
514 rmx_addinfo(mres, rmx_mismatch_warn);
515 for (i = mres->nrows; i--; )
516 for (j = mres->ncols; j--; )
517 for (k = mres->ncomp; k--; ) {
518 long double d = 0;
519 for (h = m1->ncols; h--; )
520 d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
521 rmx_lval(mres,i,j,k) = (double)d;
522 }
523 return(mres);
524 }
525
526 /* Element-wise multiplication (or division) of m2 into m1 */
527 int
528 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
529 {
530 int zeroDivides = 0;
531 int i, j, k;
532
533 if ((m1 == NULL) | (m2 == NULL) ||
534 (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
535 return(0);
536 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
537 return(0);
538 i = rmx_newtype(m1->dtype, m2->dtype);
539 if (i)
540 m1->dtype = i;
541 else
542 rmx_addinfo(m1, rmx_mismatch_warn);
543 for (i = m1->nrows; i--; )
544 for (j = m1->ncols; j--; )
545 if (divide) {
546 double d;
547 if (m2->ncomp == 1) {
548 d = rmx_lval(m2,i,j,0);
549 if (d == 0) {
550 ++zeroDivides;
551 for (k = m1->ncomp; k--; )
552 rmx_lval(m1,i,j,k) = 0;
553 } else {
554 d = 1./d;
555 for (k = m1->ncomp; k--; )
556 rmx_lval(m1,i,j,k) *= d;
557 }
558 } else
559 for (k = m1->ncomp; k--; ) {
560 d = rmx_lval(m2,i,j,k);
561 if (d == 0) {
562 ++zeroDivides;
563 rmx_lval(m1,i,j,k) = 0;
564 } else
565 rmx_lval(m1,i,j,k) /= d;
566 }
567 } else {
568 if (m2->ncomp == 1) {
569 const double d = rmx_lval(m2,i,j,0);
570 for (k = m1->ncomp; k--; )
571 rmx_lval(m1,i,j,k) *= d;
572 } else
573 for (k = m1->ncomp; k--; )
574 rmx_lval(m1,i,j,k) *= rmx_lval(m2,i,j,k);
575 }
576 if (zeroDivides) {
577 fputs("Divide by zero in rmx_elemult()\n", stderr);
578 errno = ERANGE;
579 }
580 return(1);
581 }
582
583 /* Sum second matrix into first, applying scale factor beforehand */
584 int
585 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
586 {
587 double *mysf = NULL;
588 int i, j, k;
589
590 if ((msum == NULL) | (madd == NULL) ||
591 (msum->nrows != madd->nrows) |
592 (msum->ncols != madd->ncols) |
593 (msum->ncomp != madd->ncomp))
594 return(0);
595 if (sf == NULL) {
596 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
597 if (mysf == NULL)
598 return(0);
599 for (k = msum->ncomp; k--; )
600 mysf[k] = 1;
601 sf = mysf;
602 }
603 i = rmx_newtype(msum->dtype, madd->dtype);
604 if (i)
605 msum->dtype = i;
606 else
607 rmx_addinfo(msum, rmx_mismatch_warn);
608 for (i = msum->nrows; i--; )
609 for (j = msum->ncols; j--; )
610 for (k = msum->ncomp; k--; )
611 rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
612
613 free(mysf);
614 return(1);
615 }
616
617 /* Scale the given matrix by the indicated scalar component vector */
618 int
619 rmx_scale(RMATRIX *rm, const double sf[])
620 {
621 int i, j, k;
622
623 if ((rm == NULL) | (sf == NULL))
624 return(0);
625 for (i = rm->nrows; i--; )
626 for (j = rm->ncols; j--; )
627 for (k = rm->ncomp; k--; )
628 rmx_lval(rm,i,j,k) *= sf[k];
629
630 return(1);
631 }
632
633 /* Allocate new matrix and apply component transformation */
634 RMATRIX *
635 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
636 {
637 int i, j, ks, kd;
638 RMATRIX *dnew;
639
640 if ((msrc == NULL) | (n <= 0) | (cmat == NULL))
641 return(NULL);
642 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
643 if (dnew == NULL)
644 return(NULL);
645 dnew->dtype = msrc->dtype;
646 for (i = dnew->nrows; i--; )
647 for (j = dnew->ncols; j--; )
648 for (kd = dnew->ncomp; kd--; ) {
649 double d = 0;
650 for (ks = msrc->ncomp; ks--; )
651 d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
652 rmx_lval(dnew,i,j,kd) = d;
653 }
654 return(dnew);
655 }
656
657 /* Convert a color matrix to newly allocated RMATRIX buffer */
658 RMATRIX *
659 rmx_from_cmatrix(const CMATRIX *cm)
660 {
661 int i, j;
662 RMATRIX *dnew;
663
664 if (cm == NULL)
665 return(NULL);
666 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
667 if (dnew == NULL)
668 return(NULL);
669 dnew->dtype = DTfloat;
670 for (i = dnew->nrows; i--; )
671 for (j = dnew->ncols; j--; ) {
672 const COLORV *cv = cm_lval(cm,i,j);
673 rmx_lval(dnew,i,j,0) = cv[0];
674 rmx_lval(dnew,i,j,1) = cv[1];
675 rmx_lval(dnew,i,j,2) = cv[2];
676 }
677 return(dnew);
678 }
679
680 /* Convert general matrix to newly allocated CMATRIX buffer */
681 CMATRIX *
682 cm_from_rmatrix(const RMATRIX *rm)
683 {
684 int i, j;
685 CMATRIX *cnew;
686
687 if (rm == NULL || rm->ncomp != 3)
688 return(NULL);
689 cnew = cm_alloc(rm->nrows, rm->ncols);
690 if (cnew == NULL)
691 return(NULL);
692 for (i = cnew->nrows; i--; )
693 for (j = cnew->ncols; j--; ) {
694 COLORV *cv = cm_lval(cnew,i,j);
695 cv[0] = (COLORV)rmx_lval(rm,i,j,0);
696 cv[1] = (COLORV)rmx_lval(rm,i,j,1);
697 cv[2] = (COLORV)rmx_lval(rm,i,j,2);
698 }
699 return(cnew);
700 }