ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/util/rmatrix.c
Revision: 2.24
Committed: Tue Aug 30 15:11:22 2016 UTC (7 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R1
Changes since 2.23: +2 -3 lines
Log Message:
Re-removed long double promotion, which I'd already done and undone previously!

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.23 2016/08/30 14:54:08 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <fcntl.h>
12 #include "rtio.h"
13 #include "platform.h"
14 #include "resolu.h"
15 #include "paths.h"
16 #include "rmatrix.h"
17
18 static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
19
20 /* Allocate a nr x nc matrix with n components */
21 RMATRIX *
22 rmx_alloc(int nr, int nc, int n)
23 {
24 RMATRIX *dnew;
25
26 if ((nr <= 0) | (nc <= 0) | (n <= 0))
27 return(NULL);
28 dnew = (RMATRIX *)malloc(sizeof(RMATRIX)-sizeof(dnew->mtx) +
29 sizeof(dnew->mtx[0])*(n*nr*nc));
30 if (dnew == NULL)
31 return(NULL);
32 dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n;
33 dnew->dtype = DTdouble;
34 dnew->info = NULL;
35 return(dnew);
36 }
37
38 /* Free a RMATRIX array */
39 void
40 rmx_free(RMATRIX *rm)
41 {
42 if (!rm) return;
43 if (rm->info)
44 free(rm->info);
45 free(rm);
46 }
47
48 /* Resolve data type based on two input types (returns 0 for mismatch) */
49 int
50 rmx_newtype(int dtyp1, int dtyp2)
51 {
52 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) |
53 (dtyp2==DTxyze) | (dtyp2==DTrgbe)
54 && dtyp1 != dtyp2)
55 return(0);
56 if (dtyp1 < dtyp2)
57 return(dtyp1);
58 return(dtyp2);
59 }
60
61 /* Append header information associated with matrix data */
62 int
63 rmx_addinfo(RMATRIX *rm, const char *info)
64 {
65 if (!info || !*info)
66 return(0);
67 if (!rm->info) {
68 rm->info = (char *)malloc(strlen(info)+1);
69 if (rm->info) rm->info[0] = '\0';
70 } else
71 rm->info = (char *)realloc(rm->info,
72 strlen(rm->info)+strlen(info)+1);
73 if (!rm->info)
74 return(0);
75 strcat(rm->info, info);
76 return(1);
77 }
78
79 static int
80 get_dminfo(char *s, void *p)
81 {
82 RMATRIX *ip = (RMATRIX *)p;
83 char fmt[64];
84 int i;
85
86 if (headidval(fmt, s))
87 return(0);
88 if (!strncmp(s, "NCOMP=", 6)) {
89 ip->ncomp = atoi(s+6);
90 return(0);
91 }
92 if (!strncmp(s, "NROWS=", 6)) {
93 ip->nrows = atoi(s+6);
94 return(0);
95 }
96 if (!strncmp(s, "NCOLS=", 6)) {
97 ip->ncols = atoi(s+6);
98 return(0);
99 }
100 if (!formatval(fmt, s)) {
101 rmx_addinfo(ip, s);
102 return(0);
103 }
104 for (i = 1; i < DTend; i++)
105 if (!strcmp(fmt, cm_fmt_id[i])) {
106 ip->dtype = i;
107 return(0);
108 }
109 return(-1);
110 }
111
112 static int
113 rmx_load_ascii(RMATRIX *rm, FILE *fp)
114 {
115 int i, j, k;
116
117 for (i = 0; i < rm->nrows; i++)
118 for (j = 0; j < rm->ncols; j++)
119 for (k = 0; k < rm->ncomp; k++)
120 if (fscanf(fp, "%lf", &rmx_lval(rm,i,j,k)) != 1)
121 return(0);
122 return(1);
123 }
124
125 static int
126 rmx_load_float(RMATRIX *rm, FILE *fp)
127 {
128 int i, j, k;
129 float val[100];
130
131 if (rm->ncomp > 100) {
132 fputs("Unsupported # components in rmx_load_float()\n", stderr);
133 exit(1);
134 }
135 for (i = 0; i < rm->nrows; i++)
136 for (j = 0; j < rm->ncols; j++) {
137 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
138 return(0);
139 for (k = rm->ncomp; k--; )
140 rmx_lval(rm,i,j,k) = val[k];
141 }
142 return(1);
143 }
144
145 static int
146 rmx_load_double(RMATRIX *rm, FILE *fp)
147 {
148 int i, j, k;
149 double val[100];
150
151 if (rm->ncomp > 100) {
152 fputs("Unsupported # components in rmx_load_double()\n", stderr);
153 exit(1);
154 }
155 for (i = 0; i < rm->nrows; i++)
156 for (j = 0; j < rm->ncols; j++) {
157 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
158 return(0);
159 for (k = rm->ncomp; k--; )
160 rmx_lval(rm,i,j,k) = val[k];
161 }
162 return(1);
163 }
164
165 static int
166 rmx_load_rgbe(RMATRIX *rm, FILE *fp)
167 {
168 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
169 int i, j;
170
171 if (scan == NULL)
172 return(0);
173 for (i = 0; i < rm->nrows; i++) {
174 if (freadscan(scan, rm->ncols, fp) < 0) {
175 free(scan);
176 return(0);
177 }
178 for (j = rm->ncols; j--; ) {
179 rmx_lval(rm,i,j,0) = colval(scan[j],RED);
180 rmx_lval(rm,i,j,1) = colval(scan[j],GRN);
181 rmx_lval(rm,i,j,2) = colval(scan[j],BLU);
182 }
183 }
184 free(scan);
185 return(1);
186 }
187
188 /* Load matrix from supported file type */
189 RMATRIX *
190 rmx_load(const char *inspec)
191 {
192 FILE *fp = stdin;
193 RMATRIX dinfo;
194 RMATRIX *dnew;
195
196 if (inspec == NULL) { /* reading from stdin? */
197 inspec = "<stdin>";
198 SET_FILE_BINARY(stdin);
199 } else if (inspec[0] == '!') {
200 if ((fp = popen(inspec+1, "r")) == NULL)
201 return(NULL);
202 SET_FILE_BINARY(stdin);
203 } else {
204 const char *sp = inspec; /* check suffix */
205 while (*sp)
206 ++sp;
207 while (sp > inspec && sp[-1] != '.')
208 --sp;
209 if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */
210 CMATRIX *cm = cm_loadBTDF((char *)inspec);
211 if (cm == NULL)
212 return(NULL);
213 dnew = rmx_from_cmatrix(cm);
214 cm_free(cm);
215 dnew->dtype = DTascii;
216 return(dnew);
217 }
218 /* else open it ourselves */
219 if ((fp = fopen(inspec, "rb")) == NULL)
220 return(NULL);
221 }
222 #ifdef getc_unlocked
223 flockfile(fp);
224 #endif
225 dinfo.nrows = dinfo.ncols = dinfo.ncomp = 0;
226 dinfo.dtype = DTascii; /* assumed w/o FORMAT */
227 dinfo.info = NULL;
228 if (getheader(fp, get_dminfo, &dinfo) < 0) {
229 fclose(fp);
230 return(NULL);
231 }
232 if ((dinfo.nrows <= 0) | (dinfo.ncols <= 0)) {
233 if (!fscnresolu(&dinfo.ncols, &dinfo.nrows, fp)) {
234 fclose(fp);
235 return(NULL);
236 }
237 if (dinfo.ncomp <= 0)
238 dinfo.ncomp = 3;
239 else if ((dinfo.dtype == DTrgbe) | (dinfo.dtype == DTxyze) &&
240 dinfo.ncomp != 3) {
241 fclose(fp);
242 return(NULL);
243 }
244 }
245 dnew = rmx_alloc(dinfo.nrows, dinfo.ncols, dinfo.ncomp);
246 if (dnew == NULL) {
247 fclose(fp);
248 return(NULL);
249 }
250 dnew->info = dinfo.info;
251 switch (dinfo.dtype) {
252 case DTascii:
253 SET_FILE_TEXT(stdin);
254 if (!rmx_load_ascii(dnew, fp))
255 goto loaderr;
256 dnew->dtype = DTascii; /* should leave double? */
257 break;
258 case DTfloat:
259 if (!rmx_load_float(dnew, fp))
260 goto loaderr;
261 dnew->dtype = DTfloat;
262 break;
263 case DTdouble:
264 if (!rmx_load_double(dnew, fp))
265 goto loaderr;
266 dnew->dtype = DTdouble;
267 break;
268 case DTrgbe:
269 case DTxyze:
270 if (!rmx_load_rgbe(dnew, fp))
271 goto loaderr;
272 dnew->dtype = dinfo.dtype;
273 break;
274 default:
275 goto loaderr;
276 }
277 if (fp != stdin) {
278 if (inspec[0] == '!')
279 pclose(fp);
280 else
281 fclose(fp);
282 }
283 #ifdef getc_unlocked
284 else
285 funlockfile(fp);
286 #endif
287 return(dnew);
288 loaderr: /* should report error? */
289 if (inspec[0] == '!')
290 pclose(fp);
291 else
292 fclose(fp);
293 rmx_free(dnew);
294 return(NULL);
295 }
296
297 static int
298 rmx_write_ascii(const RMATRIX *rm, FILE *fp)
299 {
300 int i, j, k;
301
302 for (i = 0; i < rm->nrows; i++) {
303 for (j = 0; j < rm->ncols; j++) {
304 for (k = 0; k < rm->ncomp; k++)
305 fprintf(fp, " %.15e", rmx_lval(rm,i,j,k));
306 fputc('\t', fp);
307 }
308 fputc('\n', fp);
309 }
310 return(1);
311 }
312
313 static int
314 rmx_write_float(const RMATRIX *rm, FILE *fp)
315 {
316 int i, j, k;
317 float val[100];
318
319 if (rm->ncomp > 100) {
320 fputs("Unsupported # components in rmx_write_float()\n", stderr);
321 exit(1);
322 }
323 for (i = 0; i < rm->nrows; i++)
324 for (j = 0; j < rm->ncols; j++) {
325 for (k = rm->ncomp; k--; )
326 val[k] = (float)rmx_lval(rm,i,j,k);
327 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
328 return(0);
329 }
330 return(1);
331 }
332
333 static int
334 rmx_write_double(const RMATRIX *rm, FILE *fp)
335 {
336 int i, j, k;
337 double val[100];
338
339 if (rm->ncomp > 100) {
340 fputs("Unsupported # components in rmx_write_double()\n", stderr);
341 exit(1);
342 }
343 for (i = 0; i < rm->nrows; i++)
344 for (j = 0; j < rm->ncols; j++) {
345 for (k = rm->ncomp; k--; )
346 val[k] = rmx_lval(rm,i,j,k);
347 if (putbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
348 return(0);
349 }
350 return(1);
351 }
352
353 static int
354 rmx_write_rgbe(const RMATRIX *rm, FILE *fp)
355 {
356 COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols);
357 int i, j;
358
359 if (scan == NULL)
360 return(0);
361 for (i = 0; i < rm->nrows; i++) {
362 for (j = rm->ncols; j--; )
363 setcolor(scan[j], rmx_lval(rm,i,j,0),
364 rmx_lval(rm,i,j,1),
365 rmx_lval(rm,i,j,2) );
366 if (fwritescan(scan, rm->ncols, fp) < 0) {
367 free(scan);
368 return(0);
369 }
370 }
371 free(scan);
372 return(1);
373 }
374
375 /* Write matrix to file type indicated by dtype */
376 int
377 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
378 {
379 RMATRIX *mydm = NULL;
380 int ok = 1;
381
382 if ((rm == NULL) | (fp == NULL))
383 return(0);
384 #ifdef getc_unlocked
385 flockfile(fp);
386 #endif
387 /* complete header */
388 if (rm->info)
389 fputs(rm->info, fp);
390 if (dtype == DTfromHeader)
391 dtype = rm->dtype;
392 else if ((dtype == DTrgbe) & (rm->dtype == DTxyze))
393 dtype = DTxyze;
394 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
395 dtype = DTrgbe;
396 if ((dtype != DTrgbe) & (dtype != DTxyze)) {
397 fprintf(fp, "NROWS=%d\n", rm->nrows);
398 fprintf(fp, "NCOLS=%d\n", rm->ncols);
399 fprintf(fp, "NCOMP=%d\n", rm->ncomp);
400 } else if (rm->ncomp != 3) { /* wrong # components? */
401 double cmtx[3];
402 if (rm->ncomp != 1) /* only convert grayscale */
403 return(0);
404 cmtx[0] = cmtx[1] = cmtx[2] = 1;
405 mydm = rmx_transform(rm, 3, cmtx);
406 if (mydm == NULL)
407 return(0);
408 rm = mydm;
409 }
410 fputformat((char *)cm_fmt_id[dtype], fp);
411 fputc('\n', fp);
412 switch (dtype) { /* write data */
413 case DTascii:
414 ok = rmx_write_ascii(rm, fp);
415 break;
416 case DTfloat:
417 ok = rmx_write_float(rm, fp);
418 break;
419 case DTdouble:
420 ok = rmx_write_double(rm, fp);
421 break;
422 case DTrgbe:
423 case DTxyze:
424 fprtresolu(rm->ncols, rm->nrows, fp);
425 ok = rmx_write_rgbe(rm, fp);
426 break;
427 default:
428 return(0);
429 }
430 ok &= (fflush(fp) == 0);
431 #ifdef getc_unlocked
432 funlockfile(fp);
433 #endif
434 rmx_free(mydm);
435 return(ok);
436 }
437
438 /* Allocate and assign square identity matrix with n components */
439 RMATRIX *
440 rmx_identity(const int dim, const int n)
441 {
442 RMATRIX *rid = rmx_alloc(dim, dim, n);
443 int i, k;
444
445 if (rid == NULL)
446 return(NULL);
447 memset(rid->mtx, 0, sizeof(rid->mtx[0])*n*dim*dim);
448 for (i = dim; i--; )
449 for (k = n; k--; )
450 rmx_lval(rid,i,i,k) = 1;
451 return(rid);
452 }
453
454 /* Duplicate the given matrix */
455 RMATRIX *
456 rmx_copy(const RMATRIX *rm)
457 {
458 RMATRIX *dnew;
459
460 if (rm == NULL)
461 return(NULL);
462 dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp);
463 if (dnew == NULL)
464 return(NULL);
465 rmx_addinfo(dnew, rm->info);
466 dnew->dtype = rm->dtype;
467 memcpy(dnew->mtx, rm->mtx,
468 sizeof(rm->mtx[0])*rm->ncomp*rm->nrows*rm->ncols);
469 return(dnew);
470 }
471
472 /* Allocate and assign transposed matrix */
473 RMATRIX *
474 rmx_transpose(const RMATRIX *rm)
475 {
476 RMATRIX *dnew;
477 int i, j, k;
478
479 if (rm == NULL)
480 return(0);
481 dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp);
482 if (dnew == NULL)
483 return(NULL);
484 if (rm->info) {
485 rmx_addinfo(dnew, rm->info);
486 rmx_addinfo(dnew, "Transposed rows and columns\n");
487 }
488 dnew->dtype = rm->dtype;
489 for (i = dnew->nrows; i--; )
490 for (j = dnew->ncols; j--; )
491 for (k = dnew->ncomp; k--; )
492 rmx_lval(dnew,i,j,k) = rmx_lval(rm,j,i,k);
493 return(dnew);
494 }
495
496 /* Multiply (concatenate) two matrices and allocate the result */
497 RMATRIX *
498 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
499 {
500 RMATRIX *mres;
501 int i, j, k, h;
502
503 if ((m1 == NULL) | (m2 == NULL) ||
504 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
505 return(NULL);
506 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
507 if (mres == NULL)
508 return(NULL);
509 i = rmx_newtype(m1->dtype, m2->dtype);
510 if (i)
511 mres->dtype = i;
512 else
513 rmx_addinfo(mres, rmx_mismatch_warn);
514 for (i = mres->nrows; i--; )
515 for (j = mres->ncols; j--; )
516 for (k = mres->ncomp; k--; ) {
517 long double d = 0;
518 for (h = m1->ncols; h--; )
519 d += rmx_lval(m1,i,h,k) * rmx_lval(m2,h,j,k);
520 rmx_lval(mres,i,j,k) = (double)d;
521 }
522 return(mres);
523 }
524
525 /* Sum second matrix into first, applying scale factor beforehand */
526 int
527 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
528 {
529 double *mysf = NULL;
530 int i, j, k;
531
532 if ((msum == NULL) | (madd == NULL) ||
533 (msum->nrows != madd->nrows) |
534 (msum->ncols != madd->ncols) |
535 (msum->ncomp != madd->ncomp))
536 return(0);
537 if (sf == NULL) {
538 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
539 if (mysf == NULL)
540 return(0);
541 for (k = msum->ncomp; k--; )
542 mysf[k] = 1;
543 sf = mysf;
544 }
545 i = rmx_newtype(msum->dtype, madd->dtype);
546 if (i)
547 msum->dtype = i;
548 else
549 rmx_addinfo(msum, rmx_mismatch_warn);
550 for (i = msum->nrows; i--; )
551 for (j = msum->ncols; j--; )
552 for (k = msum->ncomp; k--; )
553 rmx_lval(msum,i,j,k) += sf[k] * rmx_lval(madd,i,j,k);
554
555 free(mysf);
556 return(1);
557 }
558
559 /* Scale the given matrix by the indicated scalar component vector */
560 int
561 rmx_scale(RMATRIX *rm, const double sf[])
562 {
563 int i, j, k;
564
565 if ((rm == NULL) | (sf == NULL))
566 return(0);
567 for (i = rm->nrows; i--; )
568 for (j = rm->ncols; j--; )
569 for (k = rm->ncomp; k--; )
570 rmx_lval(rm,i,j,k) *= sf[k];
571
572 return(1);
573 }
574
575 /* Allocate new matrix and apply component transformation */
576 RMATRIX *
577 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
578 {
579 int i, j, ks, kd;
580 RMATRIX *dnew;
581
582 if ((msrc == NULL) | (n <= 0) | (cmat == NULL))
583 return(NULL);
584 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
585 if (dnew == NULL)
586 return(NULL);
587 dnew->dtype = msrc->dtype;
588 for (i = dnew->nrows; i--; )
589 for (j = dnew->ncols; j--; )
590 for (kd = dnew->ncomp; kd--; ) {
591 double d = 0;
592 for (ks = msrc->ncomp; ks--; )
593 d += cmat[kd*msrc->ncomp + ks] * rmx_lval(msrc,i,j,ks);
594 rmx_lval(dnew,i,j,kd) = d;
595 }
596 return(dnew);
597 }
598
599 /* Convert a color matrix to newly allocated RMATRIX buffer */
600 RMATRIX *
601 rmx_from_cmatrix(const CMATRIX *cm)
602 {
603 int i, j;
604 RMATRIX *dnew;
605
606 if (cm == NULL)
607 return(NULL);
608 dnew = rmx_alloc(cm->nrows, cm->ncols, 3);
609 if (dnew == NULL)
610 return(NULL);
611 dnew->dtype = DTfloat;
612 for (i = dnew->nrows; i--; )
613 for (j = dnew->ncols; j--; ) {
614 const COLORV *cv = cm_lval(cm,i,j);
615 rmx_lval(dnew,i,j,0) = cv[0];
616 rmx_lval(dnew,i,j,1) = cv[1];
617 rmx_lval(dnew,i,j,2) = cv[2];
618 }
619 return(dnew);
620 }
621
622 /* Convert general matrix to newly allocated CMATRIX buffer */
623 CMATRIX *
624 cm_from_rmatrix(const RMATRIX *rm)
625 {
626 int i, j;
627 CMATRIX *cnew;
628
629 if (rm == NULL || rm->ncomp != 3)
630 return(NULL);
631 cnew = cm_alloc(rm->nrows, rm->ncols);
632 if (cnew == NULL)
633 return(NULL);
634 for (i = cnew->nrows; i--; )
635 for (j = cnew->ncols; j--; ) {
636 COLORV *cv = cm_lval(cnew,i,j);
637 cv[0] = (COLORV)rmx_lval(rm,i,j,0);
638 cv[1] = (COLORV)rmx_lval(rm,i,j,1);
639 cv[2] = (COLORV)rmx_lval(rm,i,j,2);
640 }
641 return(cnew);
642 }