ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/Development/ray/src/util/rmatrix.c
Revision: 2.102
Committed: Thu Oct 30 16:47:54 2025 UTC (2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.101: +38 -1 lines
Log Message:
perf: Streamlined spectral picture (HSR) i/o routines

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: rmatrix.c,v 2.101 2025/08/11 22:31:33 greg Exp $";
3 #endif
4 /*
5 * General matrix operations.
6 */
7
8 #include <stdlib.h>
9 #include <errno.h>
10 #include "rtio.h"
11 #include "platform.h"
12 #include "resolu.h"
13 #include "paths.h"
14 #include "rmatrix.h"
15 #if !defined(_WIN32) && !defined(_WIN64)
16 #include <sys/mman.h>
17 #endif
18
19 static const char rmx_mismatch_warn[] = "WARNING: data type mismatch\n";
20
21 /* Initialize a RMATRIX struct but don't allocate array space */
22 RMATRIX *
23 rmx_new(int nr, int nc, int ncomp)
24 {
25 RMATRIX *dnew;
26
27 if (ncomp <= 0)
28 return(NULL);
29
30 dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX));
31 if (!dnew)
32 return(NULL);
33
34 dnew->dtype = DTrmx_native;
35 dnew->nrows = nr;
36 dnew->ncols = nc;
37 dnew->ncomp = ncomp;
38 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
39 memcpy(dnew->wlpart, WLPART, sizeof(dnew->wlpart));
40
41 return(dnew);
42 }
43
44 /* Prepare a RMATRIX for writing (allocate array if needed) */
45 int
46 rmx_prepare(RMATRIX *rm)
47 {
48 if (!rm) return(0);
49 if (rm->mtx) /* assume it's right size */
50 return(1);
51 if ((rm->nrows <= 0) | (rm->ncols <= 0) | (rm->ncomp <= 0))
52 return(0);
53 rm->mtx = (rmx_dtype *)malloc(rmx_array_size(rm));
54 rm->pflags |= RMF_FREEMEM;
55 return(rm->mtx != NULL);
56 }
57
58 /* Call rmx_new() and rmx_prepare() */
59 RMATRIX *
60 rmx_alloc(int nr, int nc, int ncomp)
61 {
62 RMATRIX *dnew = rmx_new(nr, nc, ncomp);
63
64 if (!rmx_prepare(dnew)) {
65 rmx_free(dnew);
66 return(NULL);
67 }
68 return(dnew);
69 }
70
71 /* Clear state by freeing info and matrix data */
72 void
73 rmx_reset(RMATRIX *rm)
74 {
75 if (!rm) return;
76 if (rm->info) {
77 free(rm->info);
78 rm->info = NULL;
79 }
80 #ifdef MAP_FILE
81 if (rm->mapped) {
82 munmap(rm->mapped, rmx_mapped_size(rm));
83 rm->mapped = NULL;
84 } else
85 #endif
86 if (rm->pflags & RMF_FREEMEM) {
87 free(rm->mtx);
88 rm->pflags &= ~RMF_FREEMEM;
89 }
90 rm->mtx = NULL;
91 }
92
93 /* Free an RMATRIX struct and data */
94 void
95 rmx_free(RMATRIX *rm)
96 {
97 if (!rm) return;
98 rmx_reset(rm);
99 free(rm);
100 }
101
102 /* Resolve data type based on two input types (returns 0 for mismatch) */
103 int
104 rmx_newtype(int dtyp1, int dtyp2)
105 {
106 if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp1==DTspec) |
107 (dtyp2==DTxyze) | (dtyp2==DTrgbe) | (dtyp2==DTspec)
108 && dtyp1 != dtyp2)
109 return(0);
110 if (dtyp1 < dtyp2)
111 return(dtyp1);
112 return(dtyp2);
113 }
114
115 /* Append header information associated with matrix data */
116 int
117 rmx_addinfo(RMATRIX *rm, const char *info)
118 {
119 size_t oldlen = 0;
120
121 if (!rm || !info || !*info)
122 return(0);
123 if (!rm->info) {
124 rm->info = (char *)malloc(strlen(info)+1);
125 } else {
126 oldlen = strlen(rm->info);
127 rm->info = (char *)realloc(rm->info,
128 oldlen+strlen(info)+1);
129 }
130 if (!rm->info)
131 return(0);
132 strcpy(rm->info+oldlen, info);
133 return(1);
134 }
135
136 static int
137 get_dminfo(char *s, void *p)
138 {
139 RMATRIX *ip = (RMATRIX *)p;
140 char fmt[MAXFMTLEN];
141 int i;
142
143 if (isheadid(s))
144 return(0);
145 if (isncomp(s)) {
146 ip->ncomp = ncompval(s);
147 return(ip->ncomp - 1);
148 }
149 if (!strncmp(s, "NROWS=", 6)) {
150 ip->nrows = atoi(s+6);
151 return(ip->nrows - 1);
152 }
153 if (!strncmp(s, "NCOLS=", 6)) {
154 ip->ncols = atoi(s+6);
155 return(ip->ncols - 1);
156 }
157 if ((i = isbigendian(s)) >= 0) {
158 if (nativebigendian() != i)
159 ip->pflags |= RMF_SWAPIN;
160 else
161 ip->pflags &= ~RMF_SWAPIN;
162 return(0);
163 }
164 if (isexpos(s)) {
165 float f = exposval(s);
166 scalecolor(ip->cexp, f);
167 return(f > .0 ? 0 : -1);
168 }
169 if (iscolcor(s)) {
170 COLOR ctmp;
171 if (!colcorval(ctmp, s)) return(-1);
172 multcolor(ip->cexp, ctmp);
173 return(0);
174 }
175 if (iswlsplit(s))
176 return(wlsplitval(ip->wlpart, s) - 1);
177
178 if (!formatval(fmt, s)) {
179 rmx_addinfo(ip, s);
180 return(0);
181 } /* else check format */
182 for (i = 1; i < DTend; i++)
183 if (!strcmp(fmt, cm_fmt_id[i])) {
184 ip->dtype = i;
185 return(0);
186 }
187 return(-1); /* bad format */
188 }
189
190 static int
191 rmx_load_ascii(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
192 {
193 int j, k;
194
195 for (j = 0; j < rm->ncols; j++)
196 for (k = rm->ncomp; k-- > 0; )
197 if (fscanf(fp, rmx_scanfmt, drp++) != 1)
198 return(0);
199 return(1);
200 }
201
202 static int
203 rmx_load_float(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
204 {
205 #if DTrmx_native==DTfloat
206 if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols)
207 return(0);
208 if (rm->pflags & RMF_SWAPIN)
209 swap32((char *)drp, rm->ncols*rm->ncomp);
210 #else
211 int j, k;
212 float val[MAXCOMP];
213
214 if (rm->ncomp > MAXCOMP) {
215 fputs("Unsupported # components in rmx_load_float()\n", stderr);
216 exit(1);
217 }
218 for (j = 0; j < rm->ncols; j++) {
219 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
220 return(0);
221 if (rm->pflags & RMF_SWAPIN)
222 swap32((char *)val, rm->ncomp);
223 for (k = 0; k < rm->ncomp; k++)
224 *drp++ = val[k];
225 }
226 #endif
227 return(1);
228 }
229
230 static int
231 rmx_load_double(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
232 {
233 #if DTrmx_native==DTdouble
234 if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols)
235 return(0);
236 if (rm->pflags & RMF_SWAPIN)
237 swap64((char *)drp, rm->ncols*rm->ncomp);
238 #else
239 int j, k;
240 double val[MAXCOMP];
241
242 if (rm->ncomp > MAXCOMP) {
243 fputs("Unsupported # components in rmx_load_double()\n", stderr);
244 exit(1);
245 }
246 for (j = 0; j < rm->ncols; j++) {
247 if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp)
248 return(0);
249 if (rm->pflags & RMF_SWAPIN)
250 swap64((char *)val, rm->ncomp);
251 for (k = 0; k < rm->ncomp; k++)
252 *drp++ = (float)val[k];
253 }
254 #endif
255 return(1);
256 }
257
258 static int
259 rmx_load_rgbe(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
260 {
261 COLR *scan;
262 COLOR col;
263 int j;
264
265 if (rm->ncomp != 3)
266 return(0);
267 scan = (COLR *)tempbuffer(sizeof(COLR)*rm->ncols);
268 if (!scan)
269 return(0);
270 if (freadcolrs(scan, rm->ncols, fp) < 0)
271 return(0);
272 for (j = 0; j < rm->ncols; j++) {
273 colr_color(col, scan[j]);
274 *drp++ = colval(col,RED);
275 *drp++ = colval(col,GRN);
276 *drp++ = colval(col,BLU);
277 }
278 return(1);
279 }
280
281 #if DTrmx_native==DTfloat
282 static int
283 rmx_load_spec(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
284 {
285 COLRV *scan;
286 int j;
287
288 if ((rm->ncomp < 3) | (rm->ncomp > MAXCOMP))
289 return(0);
290 scan = (COLRV *)tempbuffer((rm->ncomp+1)*rm->ncols);
291 if (!scan)
292 return(0);
293 if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0)
294 return(0);
295 for (j = 0; j < rm->ncols; j++, drp += rm->ncomp)
296 scolr2scolor(drp, scan+j*(rm->ncomp+1), rm->ncomp);
297 return(1);
298 }
299 #else
300 static int
301 rmx_load_spec(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
302 {
303 COLRV *scan;
304 COLORV scol[MAXCOMP];
305 int j, k;
306
307 if ((rm->ncomp < 3) | (rm->ncomp > MAXCOMP))
308 return(0);
309 scan = (COLRV *)tempbuffer((rm->ncomp+1)*rm->ncols);
310 if (!scan)
311 return(0);
312 if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0)
313 return(0);
314 for (j = 0; j < rm->ncols; j++) {
315 scolr2scolor(scol, scan+j*(rm->ncomp+1), rm->ncomp);
316 for (k = 0; k < rm->ncomp; k++)
317 *drp++ = scol[k];
318 }
319 return(1);
320 }
321 #endif
322
323 /* Read matrix header from input stream (cannot be XML) */
324 int
325 rmx_load_header(RMATRIX *rm, FILE *fp)
326 {
327 if (!rm | !fp)
328 return(0);
329 rmx_reset(rm); /* clear state */
330 if (rm->nrows | rm->ncols | !rm->dtype) {
331 rm->nrows = rm->ncols = 0;
332 rm->ncomp = 3;
333 setcolor(rm->cexp, 1.f, 1.f, 1.f);
334 memcpy(rm->wlpart, WLPART, sizeof(rm->wlpart));
335 rm->pflags = 0;
336 }
337 rm->dtype = DTascii; /* assumed w/o FORMAT */
338 if (getheader(fp, get_dminfo, rm) < 0) {
339 fputs("Bad matrix header\n", stderr);
340 return(0);
341 }
342 if ((rm->dtype == DTrgbe) | (rm->dtype == DTxyze) &&
343 rm->ncomp != 3)
344 return(0);
345 if (rm->ncols <= 0 && /* resolution string? */
346 !fscnresolu(&rm->ncols, &rm->nrows, fp))
347 return(0);
348 if (rm->dtype == DTascii) /* set file type (WINDOWS) */
349 SET_FILE_TEXT(fp);
350 else
351 SET_FILE_BINARY(fp);
352 return(1);
353 }
354
355 /* Load next row as rmx_dtype (cannot be XML) */
356 int
357 rmx_load_row(rmx_dtype *drp, const RMATRIX *rm, FILE *fp)
358 {
359 switch (rm->dtype) {
360 case DTascii:
361 return(rmx_load_ascii(drp, rm, fp));
362 case DTfloat:
363 return(rmx_load_float(drp, rm, fp));
364 case DTdouble:
365 return(rmx_load_double(drp, rm, fp));
366 case DTrgbe:
367 case DTxyze:
368 return(rmx_load_rgbe(drp, rm, fp));
369 case DTspec:
370 return(rmx_load_spec(drp, rm, fp));
371 default:
372 fputs("Unsupported data type in rmx_load_row()\n", stderr);
373 }
374 return(0);
375 }
376
377 /* Allocate & load post-header data from stream given type set in rm->dtype */
378 int
379 rmx_load_data(RMATRIX *rm, FILE *fp)
380 {
381 int i;
382 #ifdef MAP_FILE
383 long pos; /* map memory for file > 1MB if possible */
384 if ((rm->dtype == DTrmx_native) & !(rm->pflags & RMF_SWAPIN) &
385 (rmx_array_size(rm) >= 1L<<20) &&
386 (pos = ftell(fp)) >= 0 && !(pos % sizeof(rmx_dtype))) {
387 rm->mapped = mmap(NULL, rmx_array_size(rm)+pos, PROT_READ|PROT_WRITE,
388 MAP_PRIVATE, fileno(fp), 0);
389 if (rm->mapped != MAP_FAILED) {
390 if (rm->pflags & RMF_FREEMEM)
391 free(rm->mtx);
392 rm->mtx = (rmx_dtype *)rm->mapped + pos/sizeof(rmx_dtype);
393 rm->pflags &= ~RMF_FREEMEM;
394 return(1);
395 } /* else fall back on reading into memory */
396 rm->mapped = NULL;
397 }
398 #endif
399 if (!rmx_prepare(rm)) { /* need in-core matrix array */
400 fprintf(stderr, "Cannot allocate %g MByte matrix array\n",
401 (1./(1L<<20))*(double)rmx_array_size(rm));
402 return(0);
403 }
404 for (i = 0; i < rm->nrows; i++)
405 if (!rmx_load_row(rmx_lval(rm,i,0), rm, fp))
406 return(0);
407 return(1);
408 }
409
410 /* Load matrix from supported file type */
411 RMATRIX *
412 rmx_load(const char *inspec)
413 {
414 FILE *fp;
415 RMATRIX *dnew;
416 int ok;
417
418 if (!inspec)
419 inspec = stdin_name;
420 else if (!*inspec)
421 return(NULL);
422 if (inspec == stdin_name) /* reading from stdin? */
423 fp = stdin;
424 else if (inspec[0] == '!')
425 fp = popen(inspec+1, "r");
426 else
427 fp = fopen(inspec, "r");
428 if (!fp) {
429 fprintf(stderr, "Cannot open for reading: %s\n", inspec);
430 return(NULL);
431 }
432 #ifdef getc_unlocked
433 flockfile(fp);
434 #endif
435 SET_FILE_BINARY(fp); /* load header info */
436 if (!rmx_load_header(dnew = rmx_new(0,0,3), fp)) {
437 fprintf(stderr, "Bad header in: %s\n", inspec);
438 if (inspec[0] == '!') pclose(fp);
439 else fclose(fp);
440 rmx_free(dnew);
441 return(NULL);
442 }
443 ok = rmx_load_data(dnew, fp); /* allocate & load data */
444
445 if (fp != stdin) { /* close input stream */
446 if (inspec[0] == '!')
447 ok &= pclose(fp)==0;
448 else
449 fclose(fp);
450 }
451 #ifdef getc_unlocked
452 else
453 funlockfile(fp);
454 #endif
455 if (!ok) { /* load failure? */
456 fprintf(stderr, "Error loading data from: %s\n", inspec);
457 rmx_free(dnew);
458 return(NULL);
459 }
460 /* undo exposure? */
461 if ((dnew->cexp[0] != 1.f) |
462 (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) {
463 double cmlt[MAXCOMP];
464 int i;
465 if (dnew->ncomp > MAXCOMP) {
466 fprintf(stderr, "Excess spectral components in: %s\n",
467 inspec);
468 rmx_free(dnew);
469 return(NULL);
470 }
471 cmlt[0] = 1./dnew->cexp[0];
472 cmlt[1] = 1./dnew->cexp[1];
473 cmlt[2] = 1./dnew->cexp[2];
474 for (i = dnew->ncomp; i-- > 3; )
475 cmlt[i] = cmlt[1]; /* XXX hack! */
476 rmx_scale(dnew, cmlt);
477 setcolor(dnew->cexp, 1.f, 1.f, 1.f);
478 }
479 return(dnew);
480 }
481
482 #if DTrmx_native==DTdouble
483 static int
484 rmx_write_float(const rmx_dtype *dp, int len, FILE *fp)
485 {
486 float val;
487
488 while (len--) {
489 val = (float)*dp++;
490 if (putbinary(&val, sizeof(val), 1, fp) != 1)
491 return(0);
492 }
493 return(1);
494 }
495 #else
496 static int
497 rmx_write_double(const rmx_dtype *dp, int len, FILE *fp)
498 {
499 double val;
500
501 while (len--) {
502 val = *dp++;
503 if (putbinary(&val, sizeof(val), 1, fp) != 1)
504 return(0);
505 }
506 return(1);
507 }
508 #endif
509
510 static int
511 rmx_write_ascii(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
512 {
513 while (len-- > 0) {
514 int k = ncomp;
515 while (k-- > 0)
516 fprintf(fp, " %.7e", *dp++);
517 fputc('\t', fp);
518 }
519 return(fputc('\n', fp) != EOF);
520 }
521
522 static int
523 rmx_write_rgbe(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
524 {
525 COLR *scan;
526 int j;
527
528 if ((ncomp != 1) & (ncomp != 3)) return(0);
529 scan = (COLR *)tempbuffer(sizeof(COLR)*len);
530 if (!scan) return(0);
531
532 for (j = 0; j < len; j++, dp += ncomp)
533 if (ncomp == 1)
534 setcolr(scan[j], dp[0], dp[0], dp[0]);
535 else
536 setcolr(scan[j], dp[0], dp[1], dp[2]);
537
538 return(fwritecolrs(scan, len, fp) >= 0);
539 }
540
541 #if DTrmx_native==DTfloat
542 static int
543 rmx_write_spec(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
544 {
545 COLRV *scan;
546 int j;
547
548 if ((ncomp < 3) | (ncomp > MAXCOMP)) return(0);
549 scan = (COLRV *)tempbuffer((ncomp+1)*len);
550 if (!scan) return(0);
551 for (j = 0; j < len; j++, dp += ncomp)
552 scolor2scolr(scan+j*(ncomp+1), dp, ncomp);
553
554 return(fwritescolrs(scan, ncomp, len, fp) >= 0);
555 }
556 #else
557 static int
558 rmx_write_spec(const rmx_dtype *dp, int ncomp, int len, FILE *fp)
559 {
560 COLRV *scan;
561 COLORV scol[MAXCOMP];
562 int j, k;
563
564 if ((ncomp < 3) | (ncomp > MAXCOMP)) return(0);
565 scan = (COLRV *)tempbuffer((ncomp+1)*len);
566 if (!scan) return(0);
567 for (j = 0; j < len; j++, dp += ncomp) {
568 for (k = ncomp; k--; )
569 scol[k] = dp[k];
570 scolor2scolr(scan+j*(ncomp+1), scol, ncomp);
571 }
572 return(fwritescolrs(scan, ncomp, len, fp) >= 0);
573 }
574 #endif
575
576 /* Check if CIE XYZ primaries were specified */
577 static int
578 findCIEprims(const char *info)
579 {
580 RGBPRIMS prims;
581
582 if (!info)
583 return(0);
584 info = strstr(info, PRIMARYSTR);
585 if (!info || !primsval(prims, info))
586 return(0);
587
588 return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) &&
589 (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) &&
590 (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01));
591 }
592
593 /* Finish writing header data with resolution and format, returning type used */
594 int
595 rmx_write_header(const RMATRIX *rm, int dtype, FILE *fp)
596 {
597 if (!rm | !fp || rm->ncols <= 0)
598 return(0);
599 if (rm->info)
600 fputs(rm->info, fp);
601 if (dtype == DTfromHeader) {
602 dtype = rm->dtype;
603 #if DTrmx_native==DTfloat
604 if (dtype == DTdouble) /* but stored as float? */
605 dtype = DTfloat;
606 #endif
607 } else if (dtype == DTrgbe && (rm->dtype == DTxyze ||
608 findCIEprims(rm->info)))
609 dtype = DTxyze;
610 else if ((dtype == DTxyze) & (rm->dtype == DTrgbe))
611 dtype = DTrgbe;
612 if ((dtype < DTspec) & (rm->ncomp > 3))
613 dtype = DTspec;
614 else if ((dtype == DTspec) & (rm->ncomp <= 3))
615 return(0);
616
617 if (dtype == DTascii) /* set file type (WINDOWS) */
618 SET_FILE_TEXT(fp);
619 else
620 SET_FILE_BINARY(fp);
621 /* write exposure? */
622 if (rm->ncomp == 3 && (rm->cexp[RED] != rm->cexp[GRN]) |
623 (rm->cexp[GRN] != rm->cexp[BLU]))
624 fputcolcor(rm->cexp, fp);
625 else if (rm->cexp[GRN] != 1.f)
626 fputexpos(rm->cexp[GRN], fp);
627 /* matrix size? */
628 if ((dtype > DTspec) | (rm->nrows <= 0)) {
629 if (rm->nrows > 0)
630 fprintf(fp, "NROWS=%d\n", rm->nrows);
631 fprintf(fp, "NCOLS=%d\n", rm->ncols);
632 }
633 if (dtype >= DTspec) { /* # components & split? */
634 fputncomp(rm->ncomp, fp);
635 if (rm->ncomp > 3 &&
636 memcmp(rm->wlpart, WLPART, sizeof(WLPART)))
637 fputwlsplit(rm->wlpart, fp);
638 } else if ((rm->ncomp != 3) & (rm->ncomp != 1))
639 return(0); /* wrong # components */
640 if ((dtype == DTfloat) | (dtype == DTdouble))
641 fputendian(fp); /* important to record */
642 fputformat(cm_fmt_id[dtype], fp);
643 fputc('\n', fp); /* end of header */
644 if ((dtype <= DTspec) & (rm->nrows > 0))
645 fprtresolu(rm->ncols, rm->nrows, fp);
646 return(dtype);
647 }
648
649 /* Write out matrix data (usually by row) */
650 int
651 rmx_write_data(const rmx_dtype *dp, int ncomp, int len, int dtype, FILE *fp)
652 {
653 switch (dtype) {
654 #if DTrmx_native==DTdouble
655 case DTfloat:
656 return(rmx_write_float(dp, ncomp*len, fp));
657 #else
658 case DTdouble:
659 return(rmx_write_double(dp, ncomp*len, fp));
660 #endif
661 case DTrmx_native:
662 return(putbinary(dp, sizeof(*dp)*ncomp, len, fp) == len);
663 case DTascii:
664 return(rmx_write_ascii(dp, ncomp, len, fp));
665 case DTrgbe:
666 case DTxyze:
667 return(rmx_write_rgbe(dp, ncomp, len, fp));
668 case DTspec:
669 return(rmx_write_spec(dp, ncomp, len, fp));
670 }
671 return(0);
672 }
673
674 /* Write matrix using file format indicated by dtype */
675 int
676 rmx_write(const RMATRIX *rm, int dtype, FILE *fp)
677 {
678 int ok = 0;
679 int i;
680 /* complete header */
681 dtype = rmx_write_header(rm, dtype, fp);
682 if (dtype <= 0)
683 return(0);
684 #ifdef getc_unlocked
685 flockfile(fp);
686 #endif
687 if (dtype == DTrmx_native) /* write all at once? */
688 ok = rmx_write_data(rm->mtx, rm->ncomp,
689 rm->nrows*rm->ncols, dtype, fp);
690 else /* else row by row */
691 for (i = 0; i < rm->nrows; i++) {
692 ok = rmx_write_data(rmx_val(rm,i,0), rm->ncomp,
693 rm->ncols, dtype, fp);
694 if (!ok) break;
695 }
696
697 if (ok) ok = (fflush(fp) == 0);
698 #ifdef getc_unlocked
699 funlockfile(fp);
700 #endif
701 if (!ok) fputs("Error writing matrix\n", stderr);
702 return(ok);
703 }
704
705 /* Allocate and assign square identity matrix with n components */
706 RMATRIX *
707 rmx_identity(const int dim, const int n)
708 {
709 RMATRIX *rid = rmx_alloc(dim, dim, n);
710 int i, k;
711
712 if (!rid)
713 return(NULL);
714 memset(rid->mtx, 0, rmx_array_size(rid));
715 for (i = dim; i--; ) {
716 rmx_dtype *dp = rmx_lval(rid,i,i);
717 for (k = n; k--; )
718 dp[k] = 1.;
719 }
720 return(rid);
721 }
722
723 /* Duplicate the given matrix (may be unallocated) */
724 RMATRIX *
725 rmx_copy(const RMATRIX *rm)
726 {
727 RMATRIX *dnew;
728
729 if (!rm)
730 return(NULL);
731 dnew = rmx_new(rm->nrows, rm->ncols, rm->ncomp);
732 if (!dnew)
733 return(NULL);
734 if (rm->mtx) {
735 if (!rmx_prepare(dnew)) {
736 rmx_free(dnew);
737 return(NULL);
738 }
739 memcpy(dnew->mtx, rm->mtx, rmx_array_size(dnew));
740 }
741 rmx_addinfo(dnew, rm->info);
742 dnew->dtype = rm->dtype;
743 copycolor(dnew->cexp, rm->cexp);
744 memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart));
745 return(dnew);
746 }
747
748 /* Replace data in first matrix with data from second */
749 int
750 rmx_transfer_data(RMATRIX *rdst, RMATRIX *rsrc, int dometa)
751 {
752 if (!rdst | !rsrc)
753 return(0);
754 if (dometa) { /* transfer everything? */
755 rmx_reset(rdst);
756 *rdst = *rsrc;
757 rsrc->info = NULL; rsrc->mapped = NULL; rsrc->mtx = NULL;
758 return(1);
759 }
760 /* just matrix data -- leave metadata */
761 if ((rdst->nrows != rsrc->nrows) |
762 (rdst->ncols != rsrc->ncols) |
763 (rdst->ncomp != rsrc->ncomp))
764 return(0);
765 #ifdef MAP_FILE
766 if (rdst->mapped)
767 munmap(rdst->mapped, rmx_mapped_size(rdst));
768 else
769 #endif
770 if (rdst->pflags & RMF_FREEMEM) {
771 free(rdst->mtx);
772 rdst->pflags &= ~RMF_FREEMEM;
773 }
774 rdst->mapped = rsrc->mapped;
775 rdst->mtx = rsrc->mtx;
776 rdst->pflags |= rsrc->pflags & RMF_FREEMEM;
777 rsrc->mapped = NULL; rsrc->mtx = NULL;
778 return(1);
779 }
780
781 /* Transpose the given matrix */
782 int
783 rmx_transpose(RMATRIX *rm)
784 {
785 uby8 *bmap;
786 rmx_dtype val[MAXCOMP];
787 RMATRIX dold;
788 int i, j;
789
790 if (!rm || !rm->mtx | (rm->ncomp > MAXCOMP))
791 return(0);
792 if (rm->info)
793 rmx_addinfo(rm, "Transposed rows and columns\n");
794 if ((rm->nrows == 1) | (rm->ncols == 1)) { /* vector? */
795 j = rm->ncols;
796 rm->ncols = rm->nrows;
797 rm->nrows = j;
798 return(1);
799 }
800 if (rm->nrows == rm->ncols) { /* square matrix case */
801 for (i = rm->nrows; --i > 0; )
802 for (j = i; j-- > 0; ) {
803 memcpy(val, rmx_val(rm,i,j),
804 sizeof(rmx_dtype)*rm->ncomp);
805 memcpy(rmx_lval(rm,i,j), rmx_val(rm,j,i),
806 sizeof(rmx_dtype)*rm->ncomp);
807 memcpy(rmx_lval(rm,j,i), val,
808 sizeof(rmx_dtype)*rm->ncomp);
809 }
810 return(1);
811 }
812 #define bmbyte(r,c) bmap[((r)*rm->ncols+(c))>>3]
813 #define bmbit(r,c) (1 << ((r)*rm->ncols+(c) & 7))
814 #define bmop(r,c, op) (bmbyte(r,c) op bmbit(r,c))
815 #define bmtest(r,c) bmop(r,c,&)
816 #define bmset(r,c) bmop(r,c,|=)
817 /* loop completion bitmap */
818 bmap = (uby8 *)calloc(((size_t)rm->nrows*rm->ncols+7)>>3, 1);
819 if (!bmap)
820 return(0);
821 dold = *rm;
822 rm->ncols = dold.nrows; rm->nrows = dold.ncols;
823 for (i = rm->nrows; i--; ) /* try every starting point */
824 for (j = rm->ncols; j--; ) {
825 int i0, j0;
826 int i1 = i;
827 size_t j1 = j;
828 if (bmtest(i, j))
829 continue; /* traversed loop earlier */
830 memcpy(val, rmx_val(rm,i,j),
831 sizeof(rmx_dtype)*rm->ncomp);
832 for ( ; ; ) { /* new transpose loop */
833 const rmx_dtype *ds;
834 i0 = i1; j0 = j1;
835 ds = rmx_val(&dold, j0, i0);
836 j1 = (ds - dold.mtx)/dold.ncomp;
837 i1 = j1 / rm->ncols;
838 j1 -= (size_t)i1*rm->ncols;
839 bmset(i1, j1); /* mark as done */
840 if ((i1 == i) & (j1 == j))
841 break; /* back at start */
842 memcpy(rmx_lval(rm,i0,j0), ds,
843 sizeof(rmx_dtype)*rm->ncomp);
844 } /* complete the loop */
845 memcpy(rmx_lval(rm,i0,j0), val,
846 sizeof(rmx_dtype)*rm->ncomp);
847 }
848 free(bmap); /* all done! */
849 return(1);
850 #undef bmbyte
851 #undef bmbit
852 #undef bmop
853 #undef bmtest
854 #undef bmset
855 }
856
857 /* Multiply (concatenate) two matrices and allocate the result */
858 RMATRIX *
859 rmx_multiply(const RMATRIX *m1, const RMATRIX *m2)
860 {
861 RMATRIX *mres;
862 int i, j, k, h;
863
864 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
865 (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows))
866 return(NULL);
867 mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp);
868 if (!mres)
869 return(NULL);
870 i = rmx_newtype(m1->dtype, m2->dtype);
871 if (i)
872 mres->dtype = i;
873 else
874 rmx_addinfo(mres, rmx_mismatch_warn);
875 for (i = mres->nrows; i--; )
876 for (j = mres->ncols; j--; )
877 for (k = mres->ncomp; k--; ) {
878 double d = 0;
879 for (h = m1->ncols; h--; )
880 d += (double)rmx_val(m1,i,h)[k] *
881 rmx_val(m2,h,j)[k];
882 rmx_lval(mres,i,j)[k] = (rmx_dtype)d;
883 }
884 return(mres);
885 }
886
887 /* Element-wise multiplication (or division) of m2 into m1 */
888 int
889 rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide)
890 {
891 int zeroDivides = 0;
892 int i, j, k;
893
894 if (!m1 | !m2 || !m1->mtx | !m2->mtx |
895 (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows))
896 return(0);
897 if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp))
898 return(0);
899 i = rmx_newtype(m1->dtype, m2->dtype);
900 if (i)
901 m1->dtype = i;
902 else
903 rmx_addinfo(m1, rmx_mismatch_warn);
904 for (i = m1->nrows; i--; )
905 for (j = m1->ncols; j--; )
906 if (divide) {
907 rmx_dtype d;
908 if (m2->ncomp == 1) {
909 d = rmx_val(m2,i,j)[0];
910 if (d == 0) {
911 ++zeroDivides;
912 for (k = m1->ncomp; k--; )
913 rmx_lval(m1,i,j)[k] = 0;
914 } else {
915 d = 1./d;
916 for (k = m1->ncomp; k--; )
917 rmx_lval(m1,i,j)[k] *= d;
918 }
919 } else
920 for (k = m1->ncomp; k--; ) {
921 d = rmx_val(m2,i,j)[k];
922 if (d == 0) {
923 ++zeroDivides;
924 rmx_lval(m1,i,j)[k] = 0;
925 } else
926 rmx_lval(m1,i,j)[k] /= d;
927 }
928 } else {
929 if (m2->ncomp == 1) {
930 const rmx_dtype d = rmx_val(m2,i,j)[0];
931 for (k = m1->ncomp; k--; )
932 rmx_lval(m1,i,j)[k] *= d;
933 } else
934 for (k = m1->ncomp; k--; )
935 rmx_lval(m1,i,j)[k] *= rmx_val(m2,i,j)[k];
936 }
937 if (zeroDivides) {
938 rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n");
939 errno = ERANGE;
940 }
941 return(1);
942 }
943
944 /* Sum second matrix into first, applying scale factor beforehand */
945 int
946 rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[])
947 {
948 double *mysf = NULL;
949 int i, j, k;
950
951 if (!msum | !madd || !msum->mtx | !madd->mtx |
952 (msum->nrows != madd->nrows) |
953 (msum->ncols != madd->ncols) |
954 (msum->ncomp != madd->ncomp))
955 return(0);
956 if (!sf) {
957 mysf = (double *)malloc(sizeof(double)*msum->ncomp);
958 if (!mysf)
959 return(0);
960 for (k = msum->ncomp; k--; )
961 mysf[k] = 1;
962 sf = mysf;
963 }
964 i = rmx_newtype(msum->dtype, madd->dtype);
965 if (i)
966 msum->dtype = i;
967 else
968 rmx_addinfo(msum, rmx_mismatch_warn);
969 for (i = msum->nrows; i--; )
970 for (j = msum->ncols; j--; ) {
971 const rmx_dtype *da = rmx_val(madd,i,j);
972 rmx_dtype *ds = rmx_lval(msum,i,j);
973 for (k = msum->ncomp; k--; )
974 ds[k] += (rmx_dtype)sf[k] * da[k];
975 }
976 if (mysf)
977 free(mysf);
978 return(1);
979 }
980
981 /* Scale the given matrix by the indicated scalar component vector */
982 int
983 rmx_scale(RMATRIX *rm, const double sf[])
984 {
985 int i, j, k;
986
987 if (!rm | !sf || !rm->mtx)
988 return(0);
989 for (i = rm->nrows; i--; )
990 for (j = rm->ncols; j--; ) {
991 rmx_dtype *dp = rmx_lval(rm,i,j);
992 for (k = rm->ncomp; k--; )
993 dp[k] *= (rmx_dtype)sf[k];
994 }
995 if (rm->info)
996 rmx_addinfo(rm, "Applied scalar\n");
997 /* XXX: should record as exposure for COLR and SCOLR types? */
998 return(1);
999 }
1000
1001 /* Allocate new matrix and apply component transformation */
1002 RMATRIX *
1003 rmx_transform(const RMATRIX *msrc, int n, const double cmat[])
1004 {
1005 int i, j, ks, kd;
1006 RMATRIX *dnew;
1007
1008 if (!msrc | (n <= 0) | !cmat || !msrc->mtx)
1009 return(NULL);
1010 dnew = rmx_alloc(msrc->nrows, msrc->ncols, n);
1011 if (!dnew)
1012 return(NULL);
1013 if (msrc->info) {
1014 char buf[128];
1015 sprintf(buf, "Applied %dx%d component transform\n",
1016 dnew->ncomp, msrc->ncomp);
1017 rmx_addinfo(dnew, msrc->info);
1018 rmx_addinfo(dnew, buf);
1019 }
1020 dnew->dtype = msrc->dtype;
1021 for (i = dnew->nrows; i--; )
1022 for (j = dnew->ncols; j--; ) {
1023 const rmx_dtype *ds = rmx_val(msrc,i,j);
1024 for (kd = dnew->ncomp; kd--; ) {
1025 double d = 0;
1026 for (ks = msrc->ncomp; ks--; )
1027 d += cmat[kd*msrc->ncomp + ks] * ds[ks];
1028 rmx_lval(dnew,i,j)[kd] = (rmx_dtype)d;
1029 }
1030 }
1031 return(dnew);
1032 }
1033