1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: rmatrix.c,v 2.55 2022/03/06 17:21:49 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* General matrix operations. |
6 |
*/ |
7 |
|
8 |
#include <stdlib.h> |
9 |
#include <errno.h> |
10 |
#include "rtio.h" |
11 |
#include "platform.h" |
12 |
#include "resolu.h" |
13 |
#include "paths.h" |
14 |
#include "rmatrix.h" |
15 |
#if !defined(_WIN32) && !defined(_WIN64) |
16 |
#include <sys/mman.h> |
17 |
#endif |
18 |
|
19 |
static char rmx_mismatch_warn[] = "WARNING: data type mismatch\n"; |
20 |
|
21 |
#define array_size(rm) (sizeof(double)*(rm)->nrows*(rm)->ncols*(rm)->ncomp) |
22 |
#define mapped_size(rm) ((char *)(rm)->mtx + array_size(rm) - (char *)(rm)->mapped) |
23 |
|
24 |
/* Initialize a RMATRIX struct but don't allocate array space */ |
25 |
RMATRIX * |
26 |
rmx_new(int nr, int nc, int n) |
27 |
{ |
28 |
RMATRIX *dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX)); |
29 |
|
30 |
if (dnew) { |
31 |
dnew->dtype = DTdouble; |
32 |
dnew->nrows = nr; |
33 |
dnew->ncols = nc; |
34 |
dnew->ncomp = n; |
35 |
} |
36 |
return(dnew); |
37 |
} |
38 |
|
39 |
/* Prepare a RMATRIX for writing (allocate array if needed) */ |
40 |
int |
41 |
rmx_prepare(RMATRIX *rm) |
42 |
{ |
43 |
if (!rm) return(0); |
44 |
if (rm->mtx) |
45 |
return(1); |
46 |
rm->mtx = (double *)malloc(array_size(rm)); |
47 |
return(rm->mtx != NULL); |
48 |
} |
49 |
|
50 |
/* Call rmx_new() and rmx_prepare() */ |
51 |
RMATRIX * |
52 |
rmx_alloc(int nr, int nc, int n) |
53 |
{ |
54 |
RMATRIX *dnew = rmx_new(nr, nc, n); |
55 |
|
56 |
if (dnew && !rmx_prepare(dnew)) { |
57 |
rmx_free(dnew); |
58 |
dnew = NULL; |
59 |
} |
60 |
return(dnew); |
61 |
} |
62 |
|
63 |
/* Free a RMATRIX array */ |
64 |
void |
65 |
rmx_free(RMATRIX *rm) |
66 |
{ |
67 |
if (!rm) return; |
68 |
if (rm->info) |
69 |
free(rm->info); |
70 |
#ifdef MAP_FILE |
71 |
if (rm->mapped) |
72 |
munmap(rm->mapped, mapped_size(rm)); |
73 |
else |
74 |
#endif |
75 |
free(rm->mtx); |
76 |
free(rm); |
77 |
} |
78 |
|
79 |
/* Resolve data type based on two input types (returns 0 for mismatch) */ |
80 |
int |
81 |
rmx_newtype(int dtyp1, int dtyp2) |
82 |
{ |
83 |
if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | |
84 |
(dtyp2==DTxyze) | (dtyp2==DTrgbe) |
85 |
&& dtyp1 != dtyp2) |
86 |
return(0); |
87 |
if (dtyp1 < dtyp2) |
88 |
return(dtyp1); |
89 |
return(dtyp2); |
90 |
} |
91 |
|
92 |
/* Append header information associated with matrix data */ |
93 |
int |
94 |
rmx_addinfo(RMATRIX *rm, const char *info) |
95 |
{ |
96 |
int oldlen = 0; |
97 |
|
98 |
if (!rm || !info || !*info) |
99 |
return(0); |
100 |
if (!rm->info) { |
101 |
rm->info = (char *)malloc(strlen(info)+1); |
102 |
if (rm->info) rm->info[0] = '\0'; |
103 |
} else { |
104 |
oldlen = strlen(rm->info); |
105 |
rm->info = (char *)realloc(rm->info, |
106 |
oldlen+strlen(info)+1); |
107 |
} |
108 |
if (!rm->info) |
109 |
return(0); |
110 |
strcpy(rm->info+oldlen, info); |
111 |
return(1); |
112 |
} |
113 |
|
114 |
static int |
115 |
get_dminfo(char *s, void *p) |
116 |
{ |
117 |
RMATRIX *ip = (RMATRIX *)p; |
118 |
char fmt[MAXFMTLEN]; |
119 |
int i; |
120 |
|
121 |
if (headidval(fmt, s)) |
122 |
return(0); |
123 |
if (!strncmp(s, "NCOMP=", 6)) { |
124 |
ip->ncomp = atoi(s+6); |
125 |
return(0); |
126 |
} |
127 |
if (!strncmp(s, "NROWS=", 6)) { |
128 |
ip->nrows = atoi(s+6); |
129 |
return(0); |
130 |
} |
131 |
if (!strncmp(s, "NCOLS=", 6)) { |
132 |
ip->ncols = atoi(s+6); |
133 |
return(0); |
134 |
} |
135 |
if ((i = isbigendian(s)) >= 0) { |
136 |
ip->swapin = (nativebigendian() != i); |
137 |
return(0); |
138 |
} |
139 |
if (isexpos(s)) { |
140 |
float f = exposval(s); |
141 |
scalecolor(ip->cexp, f); |
142 |
return(0); |
143 |
} |
144 |
if (iscolcor(s)) { |
145 |
COLOR ctmp; |
146 |
colcorval(ctmp, s); |
147 |
multcolor(ip->cexp, ctmp); |
148 |
return(0); |
149 |
} |
150 |
if (!formatval(fmt, s)) { |
151 |
rmx_addinfo(ip, s); |
152 |
return(0); |
153 |
} /* else check format */ |
154 |
for (i = 1; i < DTend; i++) |
155 |
if (!strcmp(fmt, cm_fmt_id[i])) { |
156 |
ip->dtype = i; |
157 |
return(0); |
158 |
} |
159 |
return(-1); |
160 |
} |
161 |
|
162 |
static int |
163 |
rmx_load_ascii(RMATRIX *rm, FILE *fp) |
164 |
{ |
165 |
int i, j, k; |
166 |
|
167 |
if (!rmx_prepare(rm)) |
168 |
return(0); |
169 |
for (i = 0; i < rm->nrows; i++) |
170 |
for (j = 0; j < rm->ncols; j++) { |
171 |
double *dp = rmx_lval(rm,i,j); |
172 |
for (k = 0; k < rm->ncomp; k++) |
173 |
if (fscanf(fp, "%lf", &dp[k]) != 1) |
174 |
return(0); |
175 |
} |
176 |
return(1); |
177 |
} |
178 |
|
179 |
static int |
180 |
rmx_load_float(RMATRIX *rm, FILE *fp) |
181 |
{ |
182 |
int i, j, k; |
183 |
float val[100]; |
184 |
|
185 |
if (rm->ncomp > 100) { |
186 |
fputs("Unsupported # components in rmx_load_float()\n", stderr); |
187 |
exit(1); |
188 |
} |
189 |
if (!rmx_prepare(rm)) |
190 |
return(0); |
191 |
for (i = 0; i < rm->nrows; i++) |
192 |
for (j = 0; j < rm->ncols; j++) { |
193 |
double *dp = rmx_lval(rm,i,j); |
194 |
if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp) |
195 |
return(0); |
196 |
if (rm->swapin) |
197 |
swap32((char *)val, rm->ncomp); |
198 |
for (k = rm->ncomp; k--; ) |
199 |
dp[k] = val[k]; |
200 |
} |
201 |
return(1); |
202 |
} |
203 |
|
204 |
static int |
205 |
rmx_load_double(RMATRIX *rm, FILE *fp) |
206 |
{ |
207 |
int i; |
208 |
#ifdef MAP_FILE |
209 |
long pos; /* map memory for file > 1MB if possible */ |
210 |
if (!rm->swapin && array_size(rm) >= 1L<<20 && |
211 |
(pos = ftell(fp)) >= 0 && !(pos % sizeof(double))) { |
212 |
rm->mapped = mmap(NULL, array_size(rm)+pos, PROT_READ|PROT_WRITE, |
213 |
MAP_PRIVATE, fileno(fp), 0); |
214 |
if (rm->mapped != MAP_FAILED) { |
215 |
rm->mtx = (double *)rm->mapped + pos/sizeof(double); |
216 |
return(1); |
217 |
} /* else fall back on reading into memory */ |
218 |
rm->mapped = NULL; |
219 |
} |
220 |
#endif |
221 |
if (!rmx_prepare(rm)) |
222 |
return(0); |
223 |
for (i = 0; i < rm->nrows; i++) { |
224 |
if (getbinary(rmx_lval(rm,i,0), sizeof(double)*rm->ncomp, |
225 |
rm->ncols, fp) != rm->ncols) |
226 |
return(0); |
227 |
if (rm->swapin) |
228 |
swap64((char *)rmx_lval(rm,i,0), rm->ncols*rm->ncomp); |
229 |
} |
230 |
return(1); |
231 |
} |
232 |
|
233 |
static int |
234 |
rmx_load_rgbe(RMATRIX *rm, FILE *fp) |
235 |
{ |
236 |
COLOR *scan = (COLOR *)malloc(sizeof(COLOR)*rm->ncols); |
237 |
int i, j; |
238 |
|
239 |
if (!scan) |
240 |
return(0); |
241 |
if (!rmx_prepare(rm)) |
242 |
return(0); |
243 |
for (i = 0; i < rm->nrows; i++) { |
244 |
double *dp = rmx_lval(rm,i,j); |
245 |
if (freadscan(scan, rm->ncols, fp) < 0) { |
246 |
free(scan); |
247 |
return(0); |
248 |
} |
249 |
for (j = 0; j < rm->ncols; j++, dp += 3) { |
250 |
dp[0] = colval(scan[j],RED); |
251 |
dp[1] = colval(scan[j],GRN); |
252 |
dp[2] = colval(scan[j],BLU); |
253 |
} |
254 |
} |
255 |
free(scan); |
256 |
return(1); |
257 |
} |
258 |
|
259 |
/* Load matrix from supported file type */ |
260 |
RMATRIX * |
261 |
rmx_load(const char *inspec, RMPref rmp) |
262 |
{ |
263 |
FILE *fp; |
264 |
RMATRIX *dnew; |
265 |
|
266 |
if (!inspec) |
267 |
inspec = stdin_name; |
268 |
else if (!*inspec) |
269 |
return(NULL); |
270 |
if (inspec == stdin_name) { /* reading from stdin? */ |
271 |
fp = stdin; |
272 |
} else if (inspec[0] == '!') { |
273 |
if (!(fp = popen(inspec+1, "r"))) |
274 |
return(NULL); |
275 |
} else { |
276 |
const char *sp = inspec; /* check suffix */ |
277 |
while (*sp) |
278 |
++sp; |
279 |
while (sp > inspec && sp[-1] != '.') |
280 |
--sp; |
281 |
if (!strcasecmp(sp, "XML")) { /* assume it's a BSDF */ |
282 |
CMATRIX *cm = rmp==RMPtrans ? cm_loadBTDF(inspec) : |
283 |
cm_loadBRDF(inspec, rmp==RMPreflB) ; |
284 |
if (!cm) |
285 |
return(NULL); |
286 |
dnew = rmx_from_cmatrix(cm); |
287 |
cm_free(cm); |
288 |
dnew->dtype = DTascii; |
289 |
return(dnew); |
290 |
} |
291 |
/* else open it ourselves */ |
292 |
if (!(fp = fopen(inspec, "r"))) |
293 |
return(NULL); |
294 |
} |
295 |
SET_FILE_BINARY(fp); |
296 |
#ifdef getc_unlocked |
297 |
flockfile(fp); |
298 |
#endif |
299 |
if (!(dnew = rmx_new(0,0,3))) { |
300 |
fclose(fp); |
301 |
return(NULL); |
302 |
} |
303 |
dnew->dtype = DTascii; /* assumed w/o FORMAT */ |
304 |
dnew->cexp[0] = dnew->cexp[1] = dnew->cexp[2] = 1.f; |
305 |
if (getheader(fp, get_dminfo, dnew) < 0) { |
306 |
fclose(fp); |
307 |
return(NULL); |
308 |
} |
309 |
if ((dnew->nrows <= 0) | (dnew->ncols <= 0)) { |
310 |
if (!fscnresolu(&dnew->ncols, &dnew->nrows, fp)) { |
311 |
fclose(fp); |
312 |
return(NULL); |
313 |
} |
314 |
if ((dnew->dtype == DTrgbe) | (dnew->dtype == DTxyze) && |
315 |
dnew->ncomp != 3) { |
316 |
fclose(fp); |
317 |
return(NULL); |
318 |
} |
319 |
} |
320 |
switch (dnew->dtype) { |
321 |
case DTascii: |
322 |
SET_FILE_TEXT(fp); |
323 |
if (!rmx_load_ascii(dnew, fp)) |
324 |
goto loaderr; |
325 |
dnew->dtype = DTascii; /* should leave double? */ |
326 |
break; |
327 |
case DTfloat: |
328 |
if (!rmx_load_float(dnew, fp)) |
329 |
goto loaderr; |
330 |
dnew->dtype = DTfloat; |
331 |
break; |
332 |
case DTdouble: |
333 |
if (!rmx_load_double(dnew, fp)) |
334 |
goto loaderr; |
335 |
dnew->dtype = DTdouble; |
336 |
break; |
337 |
case DTrgbe: |
338 |
case DTxyze: |
339 |
if (!rmx_load_rgbe(dnew, fp)) |
340 |
goto loaderr; |
341 |
/* undo exposure? */ |
342 |
if ((dnew->cexp[0] != 1.f) | (dnew->cexp[1] != 1.f) | |
343 |
(dnew->cexp[2] != 1.f)) { |
344 |
double cmlt[3]; |
345 |
cmlt[0] = 1./dnew->cexp[0]; |
346 |
cmlt[1] = 1./dnew->cexp[1]; |
347 |
cmlt[2] = 1./dnew->cexp[2]; |
348 |
rmx_scale(dnew, cmlt); |
349 |
} |
350 |
dnew->swapin = 0; |
351 |
break; |
352 |
default: |
353 |
goto loaderr; |
354 |
} |
355 |
if (fp != stdin) { |
356 |
if (inspec[0] == '!') |
357 |
pclose(fp); |
358 |
else |
359 |
fclose(fp); |
360 |
} |
361 |
#ifdef getc_unlocked |
362 |
else |
363 |
funlockfile(fp); |
364 |
#endif |
365 |
return(dnew); |
366 |
loaderr: /* should report error? */ |
367 |
if (inspec[0] == '!') |
368 |
pclose(fp); |
369 |
else |
370 |
fclose(fp); |
371 |
rmx_free(dnew); |
372 |
return(NULL); |
373 |
} |
374 |
|
375 |
static int |
376 |
rmx_write_ascii(const RMATRIX *rm, FILE *fp) |
377 |
{ |
378 |
const char *fmt = (rm->dtype == DTfloat) ? " %.7e" : |
379 |
(rm->dtype == DTrgbe) | (rm->dtype == DTxyze) ? " %.3e" : |
380 |
" %.15e" ; |
381 |
int i, j, k; |
382 |
|
383 |
for (i = 0; i < rm->nrows; i++) { |
384 |
for (j = 0; j < rm->ncols; j++) { |
385 |
const double *dp = rmx_lval(rm,i,j); |
386 |
for (k = 0; k < rm->ncomp; k++) |
387 |
fprintf(fp, fmt, dp[k]); |
388 |
fputc('\t', fp); |
389 |
} |
390 |
fputc('\n', fp); |
391 |
} |
392 |
return(1); |
393 |
} |
394 |
|
395 |
static int |
396 |
rmx_write_float(const RMATRIX *rm, FILE *fp) |
397 |
{ |
398 |
int i, j, k; |
399 |
float val[100]; |
400 |
|
401 |
if (rm->ncomp > 100) { |
402 |
fputs("Unsupported # components in rmx_write_float()\n", stderr); |
403 |
exit(1); |
404 |
} |
405 |
for (i = 0; i < rm->nrows; i++) |
406 |
for (j = 0; j < rm->ncols; j++) { |
407 |
const double *dp = rmx_lval(rm,i,j); |
408 |
for (k = rm->ncomp; k--; ) |
409 |
val[k] = (float)dp[k]; |
410 |
if (putbinary(val, sizeof(float), rm->ncomp, fp) != rm->ncomp) |
411 |
return(0); |
412 |
} |
413 |
return(1); |
414 |
} |
415 |
|
416 |
static int |
417 |
rmx_write_double(const RMATRIX *rm, FILE *fp) |
418 |
{ |
419 |
int i; |
420 |
|
421 |
for (i = 0; i < rm->nrows; i++) |
422 |
if (putbinary(rmx_lval(rm,i,0), sizeof(double)*rm->ncomp, |
423 |
rm->ncols, fp) != rm->ncols) |
424 |
return(0); |
425 |
return(1); |
426 |
} |
427 |
|
428 |
static int |
429 |
rmx_write_rgbe(const RMATRIX *rm, FILE *fp) |
430 |
{ |
431 |
COLR *scan = (COLR *)malloc(sizeof(COLR)*rm->ncols); |
432 |
int i, j; |
433 |
|
434 |
if (!scan) |
435 |
return(0); |
436 |
for (i = 0; i < rm->nrows; i++) { |
437 |
for (j = rm->ncols; j--; ) { |
438 |
const double *dp = rmx_lval(rm,i,j); |
439 |
if (rm->ncomp == 1) |
440 |
setcolr(scan[j], dp[0], dp[0], dp[0]); |
441 |
else |
442 |
setcolr(scan[j], dp[0], dp[1], dp[2]); |
443 |
} |
444 |
if (fwritecolrs(scan, rm->ncols, fp) < 0) { |
445 |
free(scan); |
446 |
return(0); |
447 |
} |
448 |
} |
449 |
free(scan); |
450 |
return(1); |
451 |
} |
452 |
|
453 |
/* Check if CIE XYZ primaries were specified */ |
454 |
static int |
455 |
findCIEprims(const char *info) |
456 |
{ |
457 |
RGBPRIMS prims; |
458 |
|
459 |
if (!info) |
460 |
return(0); |
461 |
info = strstr(info, PRIMARYSTR); |
462 |
if (!info || !primsval(prims, info)) |
463 |
return(0); |
464 |
|
465 |
return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) && |
466 |
(prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) && |
467 |
(prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01)); |
468 |
} |
469 |
|
470 |
/* Write matrix to file type indicated by dtype */ |
471 |
int |
472 |
rmx_write(const RMATRIX *rm, int dtype, FILE *fp) |
473 |
{ |
474 |
int ok = 1; |
475 |
|
476 |
if (!rm | !fp || !rm->mtx) |
477 |
return(0); |
478 |
#ifdef getc_unlocked |
479 |
flockfile(fp); |
480 |
#endif |
481 |
/* complete header */ |
482 |
if (rm->info) |
483 |
fputs(rm->info, fp); |
484 |
if (dtype == DTfromHeader) |
485 |
dtype = rm->dtype; |
486 |
else if (dtype == DTrgbe && (rm->dtype == DTxyze || |
487 |
findCIEprims(rm->info))) |
488 |
dtype = DTxyze; |
489 |
else if ((dtype == DTxyze) & (rm->dtype == DTrgbe)) |
490 |
dtype = DTrgbe; |
491 |
if ((dtype != DTrgbe) & (dtype != DTxyze)) { |
492 |
fprintf(fp, "NROWS=%d\n", rm->nrows); |
493 |
fprintf(fp, "NCOLS=%d\n", rm->ncols); |
494 |
fprintf(fp, "NCOMP=%d\n", rm->ncomp); |
495 |
} else if ((rm->ncomp != 3) & (rm->ncomp != 1)) |
496 |
return(0); /* wrong # components */ |
497 |
if ((dtype == DTfloat) | (dtype == DTdouble)) |
498 |
fputendian(fp); /* important to record */ |
499 |
fputformat(cm_fmt_id[dtype], fp); |
500 |
fputc('\n', fp); |
501 |
switch (dtype) { /* write data */ |
502 |
case DTascii: |
503 |
ok = rmx_write_ascii(rm, fp); |
504 |
break; |
505 |
case DTfloat: |
506 |
ok = rmx_write_float(rm, fp); |
507 |
break; |
508 |
case DTdouble: |
509 |
ok = rmx_write_double(rm, fp); |
510 |
break; |
511 |
case DTrgbe: |
512 |
case DTxyze: |
513 |
fprtresolu(rm->ncols, rm->nrows, fp); |
514 |
ok = rmx_write_rgbe(rm, fp); |
515 |
break; |
516 |
default: |
517 |
return(0); |
518 |
} |
519 |
ok &= (fflush(fp) == 0); |
520 |
#ifdef getc_unlocked |
521 |
funlockfile(fp); |
522 |
#endif |
523 |
return(ok); |
524 |
} |
525 |
|
526 |
/* Allocate and assign square identity matrix with n components */ |
527 |
RMATRIX * |
528 |
rmx_identity(const int dim, const int n) |
529 |
{ |
530 |
RMATRIX *rid = rmx_alloc(dim, dim, n); |
531 |
int i, k; |
532 |
|
533 |
if (!rid) |
534 |
return(NULL); |
535 |
memset(rid->mtx, 0, array_size(rid)); |
536 |
for (i = dim; i--; ) { |
537 |
double *dp = rmx_lval(rid,i,i); |
538 |
for (k = n; k--; ) |
539 |
dp[k] = 1.; |
540 |
} |
541 |
return(rid); |
542 |
} |
543 |
|
544 |
/* Duplicate the given matrix */ |
545 |
RMATRIX * |
546 |
rmx_copy(const RMATRIX *rm) |
547 |
{ |
548 |
RMATRIX *dnew; |
549 |
|
550 |
if (!rm) |
551 |
return(NULL); |
552 |
dnew = rmx_alloc(rm->nrows, rm->ncols, rm->ncomp); |
553 |
if (!dnew) |
554 |
return(NULL); |
555 |
rmx_addinfo(dnew, rm->info); |
556 |
dnew->dtype = rm->dtype; |
557 |
memcpy(dnew->mtx, rm->mtx, array_size(dnew)); |
558 |
return(dnew); |
559 |
} |
560 |
|
561 |
/* Allocate and assign transposed matrix */ |
562 |
RMATRIX * |
563 |
rmx_transpose(const RMATRIX *rm) |
564 |
{ |
565 |
RMATRIX *dnew; |
566 |
int i, j; |
567 |
|
568 |
if (!rm) |
569 |
return(0); |
570 |
if ((rm->nrows == 1) | (rm->ncols == 1)) { |
571 |
dnew = rmx_copy(rm); |
572 |
if (!dnew) |
573 |
return(NULL); |
574 |
dnew->nrows = rm->ncols; |
575 |
dnew->ncols = rm->nrows; |
576 |
return(dnew); |
577 |
} |
578 |
dnew = rmx_alloc(rm->ncols, rm->nrows, rm->ncomp); |
579 |
if (!dnew) |
580 |
return(NULL); |
581 |
if (rm->info) { |
582 |
rmx_addinfo(dnew, rm->info); |
583 |
rmx_addinfo(dnew, "Transposed rows and columns\n"); |
584 |
} |
585 |
dnew->dtype = rm->dtype; |
586 |
for (j = dnew->ncols; j--; ) |
587 |
for (i = dnew->nrows; i--; ) |
588 |
memcpy(rmx_lval(dnew,i,j), rmx_lval(rm,j,i), |
589 |
sizeof(double)*dnew->ncomp); |
590 |
return(dnew); |
591 |
} |
592 |
|
593 |
/* Multiply (concatenate) two matrices and allocate the result */ |
594 |
RMATRIX * |
595 |
rmx_multiply(const RMATRIX *m1, const RMATRIX *m2) |
596 |
{ |
597 |
RMATRIX *mres; |
598 |
int i, j, k, h; |
599 |
|
600 |
if (!m1 | !m2 || (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows)) |
601 |
return(NULL); |
602 |
mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp); |
603 |
if (!mres) |
604 |
return(NULL); |
605 |
i = rmx_newtype(m1->dtype, m2->dtype); |
606 |
if (i) |
607 |
mres->dtype = i; |
608 |
else |
609 |
rmx_addinfo(mres, rmx_mismatch_warn); |
610 |
for (i = mres->nrows; i--; ) |
611 |
for (j = mres->ncols; j--; ) |
612 |
for (k = mres->ncomp; k--; ) { |
613 |
double d = 0; |
614 |
for (h = m1->ncols; h--; ) |
615 |
d += rmx_lval(m1,i,h)[k] * rmx_lval(m2,h,j)[k]; |
616 |
rmx_lval(mres,i,j)[k] = d; |
617 |
} |
618 |
return(mres); |
619 |
} |
620 |
|
621 |
/* Element-wise multiplication (or division) of m2 into m1 */ |
622 |
int |
623 |
rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide) |
624 |
{ |
625 |
int zeroDivides = 0; |
626 |
int i, j, k; |
627 |
|
628 |
if (!m1 | !m2 || (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows)) |
629 |
return(0); |
630 |
if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp)) |
631 |
return(0); |
632 |
i = rmx_newtype(m1->dtype, m2->dtype); |
633 |
if (i) |
634 |
m1->dtype = i; |
635 |
else |
636 |
rmx_addinfo(m1, rmx_mismatch_warn); |
637 |
for (i = m1->nrows; i--; ) |
638 |
for (j = m1->ncols; j--; ) |
639 |
if (divide) { |
640 |
double d; |
641 |
if (m2->ncomp == 1) { |
642 |
d = rmx_lval(m2,i,j)[0]; |
643 |
if (d == 0) { |
644 |
++zeroDivides; |
645 |
for (k = m1->ncomp; k--; ) |
646 |
rmx_lval(m1,i,j)[k] = 0; |
647 |
} else { |
648 |
d = 1./d; |
649 |
for (k = m1->ncomp; k--; ) |
650 |
rmx_lval(m1,i,j)[k] *= d; |
651 |
} |
652 |
} else |
653 |
for (k = m1->ncomp; k--; ) { |
654 |
d = rmx_lval(m2,i,j)[k]; |
655 |
if (d == 0) { |
656 |
++zeroDivides; |
657 |
rmx_lval(m1,i,j)[k] = 0; |
658 |
} else |
659 |
rmx_lval(m1,i,j)[k] /= d; |
660 |
} |
661 |
} else { |
662 |
if (m2->ncomp == 1) { |
663 |
const double d = rmx_lval(m2,i,j)[0]; |
664 |
for (k = m1->ncomp; k--; ) |
665 |
rmx_lval(m1,i,j)[k] *= d; |
666 |
} else |
667 |
for (k = m1->ncomp; k--; ) |
668 |
rmx_lval(m1,i,j)[k] *= rmx_lval(m2,i,j)[k]; |
669 |
} |
670 |
if (zeroDivides) { |
671 |
rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n"); |
672 |
errno = ERANGE; |
673 |
} |
674 |
return(1); |
675 |
} |
676 |
|
677 |
/* Sum second matrix into first, applying scale factor beforehand */ |
678 |
int |
679 |
rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[]) |
680 |
{ |
681 |
double *mysf = NULL; |
682 |
int i, j, k; |
683 |
|
684 |
if (!msum | !madd || |
685 |
(msum->nrows != madd->nrows) | |
686 |
(msum->ncols != madd->ncols) | |
687 |
(msum->ncomp != madd->ncomp)) |
688 |
return(0); |
689 |
if (!sf) { |
690 |
mysf = (double *)malloc(sizeof(double)*msum->ncomp); |
691 |
if (!mysf) |
692 |
return(0); |
693 |
for (k = msum->ncomp; k--; ) |
694 |
mysf[k] = 1; |
695 |
sf = mysf; |
696 |
} |
697 |
i = rmx_newtype(msum->dtype, madd->dtype); |
698 |
if (i) |
699 |
msum->dtype = i; |
700 |
else |
701 |
rmx_addinfo(msum, rmx_mismatch_warn); |
702 |
for (i = msum->nrows; i--; ) |
703 |
for (j = msum->ncols; j--; ) { |
704 |
const double *da = rmx_lval(madd,i,j); |
705 |
double *ds = rmx_lval(msum,i,j); |
706 |
for (k = msum->ncomp; k--; ) |
707 |
ds[k] += sf[k] * da[k]; |
708 |
} |
709 |
if (mysf) |
710 |
free(mysf); |
711 |
return(1); |
712 |
} |
713 |
|
714 |
/* Scale the given matrix by the indicated scalar component vector */ |
715 |
int |
716 |
rmx_scale(RMATRIX *rm, const double sf[]) |
717 |
{ |
718 |
int i, j, k; |
719 |
|
720 |
if (!rm | !sf) |
721 |
return(0); |
722 |
for (i = rm->nrows; i--; ) |
723 |
for (j = rm->ncols; j--; ) { |
724 |
double *dp = rmx_lval(rm,i,j); |
725 |
for (k = rm->ncomp; k--; ) |
726 |
dp[k] *= sf[k]; |
727 |
} |
728 |
if (rm->info) |
729 |
rmx_addinfo(rm, "Applied scalar\n"); |
730 |
return(1); |
731 |
} |
732 |
|
733 |
/* Allocate new matrix and apply component transformation */ |
734 |
RMATRIX * |
735 |
rmx_transform(const RMATRIX *msrc, int n, const double cmat[]) |
736 |
{ |
737 |
int i, j, ks, kd; |
738 |
RMATRIX *dnew; |
739 |
|
740 |
if (!msrc | (n <= 0) | !cmat) |
741 |
return(NULL); |
742 |
dnew = rmx_alloc(msrc->nrows, msrc->ncols, n); |
743 |
if (!dnew) |
744 |
return(NULL); |
745 |
if (msrc->info) { |
746 |
char buf[128]; |
747 |
sprintf(buf, "Applied %dx%d component transform\n", |
748 |
dnew->ncomp, msrc->ncomp); |
749 |
rmx_addinfo(dnew, msrc->info); |
750 |
rmx_addinfo(dnew, buf); |
751 |
} |
752 |
dnew->dtype = msrc->dtype; |
753 |
for (i = dnew->nrows; i--; ) |
754 |
for (j = dnew->ncols; j--; ) { |
755 |
const double *ds = rmx_lval(msrc,i,j); |
756 |
for (kd = dnew->ncomp; kd--; ) { |
757 |
double d = 0; |
758 |
for (ks = msrc->ncomp; ks--; ) |
759 |
d += cmat[kd*msrc->ncomp + ks] * ds[ks]; |
760 |
rmx_lval(dnew,i,j)[kd] = d; |
761 |
} |
762 |
} |
763 |
return(dnew); |
764 |
} |
765 |
|
766 |
/* Convert a color matrix to newly allocated RMATRIX buffer */ |
767 |
RMATRIX * |
768 |
rmx_from_cmatrix(const CMATRIX *cm) |
769 |
{ |
770 |
int i, j; |
771 |
RMATRIX *dnew; |
772 |
|
773 |
if (!cm) |
774 |
return(NULL); |
775 |
dnew = rmx_alloc(cm->nrows, cm->ncols, 3); |
776 |
if (!dnew) |
777 |
return(NULL); |
778 |
dnew->dtype = DTfloat; |
779 |
for (i = dnew->nrows; i--; ) |
780 |
for (j = dnew->ncols; j--; ) { |
781 |
const COLORV *cv = cm_lval(cm,i,j); |
782 |
double *dp = rmx_lval(dnew,i,j); |
783 |
dp[0] = cv[0]; |
784 |
dp[1] = cv[1]; |
785 |
dp[2] = cv[2]; |
786 |
} |
787 |
return(dnew); |
788 |
} |
789 |
|
790 |
/* Convert general matrix to newly allocated CMATRIX buffer */ |
791 |
CMATRIX * |
792 |
cm_from_rmatrix(const RMATRIX *rm) |
793 |
{ |
794 |
int i, j; |
795 |
CMATRIX *cnew; |
796 |
|
797 |
if (!rm || !rm->mtx | ((rm->ncomp != 3) & (rm->ncomp != 1))) |
798 |
return(NULL); |
799 |
cnew = cm_alloc(rm->nrows, rm->ncols); |
800 |
if (!cnew) |
801 |
return(NULL); |
802 |
for (i = cnew->nrows; i--; ) |
803 |
for (j = cnew->ncols; j--; ) { |
804 |
const double *dp = rmx_lval(rm,i,j); |
805 |
COLORV *cv = cm_lval(cnew,i,j); |
806 |
if (rm->ncomp == 1) |
807 |
setcolor(cv, dp[0], dp[0], dp[0]); |
808 |
else |
809 |
setcolor(cv, dp[0], dp[1], dp[2]); |
810 |
} |
811 |
return(cnew); |
812 |
} |