#ifndef lint static const char RCSid[] = "$Id: rmatrix.c,v 2.99 2025/04/22 04:45:25 greg Exp $"; #endif /* * General matrix operations. */ #include #include #include "rtio.h" #include "platform.h" #include "resolu.h" #include "paths.h" #include "rmatrix.h" #if !defined(_WIN32) && !defined(_WIN64) #include #endif static const char rmx_mismatch_warn[] = "WARNING: data type mismatch\n"; /* Initialize a RMATRIX struct but don't allocate array space */ RMATRIX * rmx_new(int nr, int nc, int n) { RMATRIX *dnew; if (n <= 0) return(NULL); dnew = (RMATRIX *)calloc(1, sizeof(RMATRIX)); if (!dnew) return(NULL); dnew->dtype = DTrmx_native; dnew->nrows = nr; dnew->ncols = nc; dnew->ncomp = n; setcolor(dnew->cexp, 1.f, 1.f, 1.f); memcpy(dnew->wlpart, WLPART, sizeof(dnew->wlpart)); return(dnew); } /* Prepare a RMATRIX for writing (allocate array if needed) */ int rmx_prepare(RMATRIX *rm) { if (!rm) return(0); if (rm->mtx) /* assume it's right size */ return(1); if ((rm->nrows <= 0) | (rm->ncols <= 0) | (rm->ncomp <= 0)) return(0); rm->mtx = (rmx_dtype *)malloc(rmx_array_size(rm)); rm->pflags |= RMF_FREEMEM; return(rm->mtx != NULL); } /* Call rmx_new() and rmx_prepare() */ RMATRIX * rmx_alloc(int nr, int nc, int n) { RMATRIX *dnew = rmx_new(nr, nc, n); if (!rmx_prepare(dnew)) { rmx_free(dnew); return(NULL); } return(dnew); } /* Clear state by freeing info and matrix data */ void rmx_reset(RMATRIX *rm) { if (!rm) return; if (rm->info) { free(rm->info); rm->info = NULL; } #ifdef MAP_FILE if (rm->mapped) { munmap(rm->mapped, rmx_mapped_size(rm)); rm->mapped = NULL; } else #endif if (rm->pflags & RMF_FREEMEM) { free(rm->mtx); rm->pflags &= ~RMF_FREEMEM; } rm->mtx = NULL; } /* Free an RMATRIX struct and data */ void rmx_free(RMATRIX *rm) { if (!rm) return; rmx_reset(rm); free(rm); } /* Resolve data type based on two input types (returns 0 for mismatch) */ int rmx_newtype(int dtyp1, int dtyp2) { if ((dtyp1==DTxyze) | (dtyp1==DTrgbe) | (dtyp1==DTspec) | (dtyp2==DTxyze) | (dtyp2==DTrgbe) | (dtyp2==DTspec) && dtyp1 != dtyp2) return(0); if (dtyp1 < dtyp2) return(dtyp1); return(dtyp2); } /* Append header information associated with matrix data */ int rmx_addinfo(RMATRIX *rm, const char *info) { size_t oldlen = 0; if (!rm || !info || !*info) return(0); if (!rm->info) { rm->info = (char *)malloc(strlen(info)+1); } else { oldlen = strlen(rm->info); rm->info = (char *)realloc(rm->info, oldlen+strlen(info)+1); } if (!rm->info) return(0); strcpy(rm->info+oldlen, info); return(1); } static int get_dminfo(char *s, void *p) { RMATRIX *ip = (RMATRIX *)p; char fmt[MAXFMTLEN]; int i; if (isheadid(s)) return(0); if (isncomp(s)) { ip->ncomp = ncompval(s); return(ip->ncomp - 1); } if (!strncmp(s, "NROWS=", 6)) { ip->nrows = atoi(s+6); return(ip->nrows - 1); } if (!strncmp(s, "NCOLS=", 6)) { ip->ncols = atoi(s+6); return(ip->ncols - 1); } if ((i = isbigendian(s)) >= 0) { if (nativebigendian() != i) ip->pflags |= RMF_SWAPIN; else ip->pflags &= ~RMF_SWAPIN; return(0); } if (isexpos(s)) { float f = exposval(s); scalecolor(ip->cexp, f); return(f > .0 ? 0 : -1); } if (iscolcor(s)) { COLOR ctmp; if (!colcorval(ctmp, s)) return(-1); multcolor(ip->cexp, ctmp); return(0); } if (iswlsplit(s)) return(wlsplitval(ip->wlpart, s) - 1); if (!formatval(fmt, s)) { rmx_addinfo(ip, s); return(0); } /* else check format */ for (i = 1; i < DTend; i++) if (!strcmp(fmt, cm_fmt_id[i])) { ip->dtype = i; return(0); } return(-1); /* bad format */ } static int rmx_load_ascii(rmx_dtype *drp, const RMATRIX *rm, FILE *fp) { int j, k; for (j = 0; j < rm->ncols; j++) for (k = rm->ncomp; k-- > 0; ) if (fscanf(fp, rmx_scanfmt, drp++) != 1) return(0); return(1); } static int rmx_load_float(rmx_dtype *drp, const RMATRIX *rm, FILE *fp) { #if DTrmx_native==DTfloat if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols) return(0); if (rm->pflags & RMF_SWAPIN) swap32((char *)drp, rm->ncols*rm->ncomp); #else int j, k; float val[MAXCOMP]; if (rm->ncomp > MAXCOMP) { fputs("Unsupported # components in rmx_load_float()\n", stderr); exit(1); } for (j = 0; j < rm->ncols; j++) { if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp) return(0); if (rm->pflags & RMF_SWAPIN) swap32((char *)val, rm->ncomp); for (k = 0; k < rm->ncomp; k++) *drp++ = val[k]; } #endif return(1); } static int rmx_load_double(rmx_dtype *drp, const RMATRIX *rm, FILE *fp) { #if DTrmx_native==DTdouble if (getbinary(drp, sizeof(*drp)*rm->ncomp, rm->ncols, fp) != rm->ncols) return(0); if (rm->pflags & RMF_SWAPIN) swap64((char *)drp, rm->ncols*rm->ncomp); #else int j, k; double val[MAXCOMP]; if (rm->ncomp > MAXCOMP) { fputs("Unsupported # components in rmx_load_double()\n", stderr); exit(1); } for (j = 0; j < rm->ncols; j++) { if (getbinary(val, sizeof(val[0]), rm->ncomp, fp) != rm->ncomp) return(0); if (rm->pflags & RMF_SWAPIN) swap64((char *)val, rm->ncomp); for (k = 0; k < rm->ncomp; k++) *drp++ = (float)val[k]; } #endif return(1); } static int rmx_load_rgbe(rmx_dtype *drp, const RMATRIX *rm, FILE *fp) { COLR *scan; COLOR col; int j; if (rm->ncomp != 3) return(0); scan = (COLR *)tempbuffer(sizeof(COLR)*rm->ncols); if (!scan) return(0); if (freadcolrs(scan, rm->ncols, fp) < 0) return(0); for (j = 0; j < rm->ncols; j++) { colr_color(col, scan[j]); *drp++ = colval(col,RED); *drp++ = colval(col,GRN); *drp++ = colval(col,BLU); } return(1); } static int rmx_load_spec(rmx_dtype *drp, const RMATRIX *rm, FILE *fp) { COLRV *scan; COLORV scol[MAXCOMP]; int j, k; if ((rm->ncomp < 3) | (rm->ncomp > MAXCOMP)) return(0); scan = (COLRV *)tempbuffer((rm->ncomp+1)*rm->ncols); if (!scan) return(0); if (freadscolrs(scan, rm->ncomp, rm->ncols, fp) < 0) return(0); for (j = 0; j < rm->ncols; j++) { scolr2scolor(scol, scan+j*(rm->ncomp+1), rm->ncomp); for (k = 0; k < rm->ncomp; k++) *drp++ = scol[k]; } return(1); } /* Read matrix header from input stream (cannot be XML) */ int rmx_load_header(RMATRIX *rm, FILE *fp) { if (!rm | !fp) return(0); rmx_reset(rm); /* clear state */ if (rm->nrows | rm->ncols | !rm->dtype) { rm->nrows = rm->ncols = 0; rm->ncomp = 3; setcolor(rm->cexp, 1.f, 1.f, 1.f); memcpy(rm->wlpart, WLPART, sizeof(rm->wlpart)); rm->pflags = 0; } rm->dtype = DTascii; /* assumed w/o FORMAT */ if (getheader(fp, get_dminfo, rm) < 0) { fputs("Bad matrix header\n", stderr); return(0); } if ((rm->dtype == DTrgbe) | (rm->dtype == DTxyze) && rm->ncomp != 3) return(0); if (rm->ncols <= 0 && /* resolution string? */ !fscnresolu(&rm->ncols, &rm->nrows, fp)) return(0); if (rm->dtype == DTascii) /* set file type (WINDOWS) */ SET_FILE_TEXT(fp); else SET_FILE_BINARY(fp); return(1); } /* Load next row as rmx_dtype (cannot be XML) */ int rmx_load_row(rmx_dtype *drp, const RMATRIX *rm, FILE *fp) { switch (rm->dtype) { case DTascii: return(rmx_load_ascii(drp, rm, fp)); case DTfloat: return(rmx_load_float(drp, rm, fp)); case DTdouble: return(rmx_load_double(drp, rm, fp)); case DTrgbe: case DTxyze: return(rmx_load_rgbe(drp, rm, fp)); case DTspec: return(rmx_load_spec(drp, rm, fp)); default: fputs("Unsupported data type in rmx_load_row()\n", stderr); } return(0); } /* Allocate & load post-header data from stream given type set in rm->dtype */ int rmx_load_data(RMATRIX *rm, FILE *fp) { int i; #ifdef MAP_FILE long pos; /* map memory for file > 1MB if possible */ if ((rm->dtype == DTrmx_native) & !(rm->pflags & RMF_SWAPIN) & (rmx_array_size(rm) >= 1L<<20) && (pos = ftell(fp)) >= 0 && !(pos % sizeof(rmx_dtype))) { rm->mapped = mmap(NULL, rmx_array_size(rm)+pos, PROT_READ|PROT_WRITE, MAP_PRIVATE, fileno(fp), 0); if (rm->mapped != MAP_FAILED) { if (rm->pflags & RMF_FREEMEM) free(rm->mtx); rm->mtx = (rmx_dtype *)rm->mapped + pos/sizeof(rmx_dtype); rm->pflags &= ~RMF_FREEMEM; return(1); } /* else fall back on reading into memory */ rm->mapped = NULL; } #endif if (!rmx_prepare(rm)) { /* need in-core matrix array */ fprintf(stderr, "Cannot allocate %g MByte matrix array\n", (1./(1L<<20))*(double)rmx_array_size(rm)); return(0); } for (i = 0; i < rm->nrows; i++) if (!rmx_load_row(rmx_lval(rm,i,0), rm, fp)) return(0); return(1); } /* Load matrix from supported file type */ RMATRIX * rmx_load(const char *inspec) { FILE *fp; RMATRIX *dnew; int ok; if (!inspec) inspec = stdin_name; else if (!*inspec) return(NULL); if (inspec == stdin_name) /* reading from stdin? */ fp = stdin; else if (inspec[0] == '!') fp = popen(inspec+1, "r"); else fp = fopen(inspec, "r"); if (!fp) { fprintf(stderr, "Cannot open for reading: %s\n", inspec); return(NULL); } #ifdef getc_unlocked flockfile(fp); #endif SET_FILE_BINARY(fp); /* load header info */ if (!rmx_load_header(dnew = rmx_new(0,0,3), fp)) { fprintf(stderr, "Bad header in: %s\n", inspec); if (inspec[0] == '!') pclose(fp); else fclose(fp); rmx_free(dnew); return(NULL); } ok = rmx_load_data(dnew, fp); /* allocate & load data */ if (fp != stdin) { /* close input stream */ if (inspec[0] == '!') ok &= pclose(fp)==0; else fclose(fp); } #ifdef getc_unlocked else funlockfile(fp); #endif if (!ok) { /* load failure? */ fprintf(stderr, "Error loading data from: %s\n", inspec); rmx_free(dnew); return(NULL); } /* undo exposure? */ if ((dnew->cexp[0] != 1.f) | (dnew->cexp[1] != 1.f) | (dnew->cexp[2] != 1.f)) { double cmlt[MAXCOMP]; int i; if (dnew->ncomp > MAXCOMP) { fprintf(stderr, "Excess spectral components in: %s\n", inspec); rmx_free(dnew); return(NULL); } cmlt[0] = 1./dnew->cexp[0]; cmlt[1] = 1./dnew->cexp[1]; cmlt[2] = 1./dnew->cexp[2]; for (i = dnew->ncomp; i-- > 3; ) cmlt[i] = cmlt[1]; /* XXX hack! */ rmx_scale(dnew, cmlt); setcolor(dnew->cexp, 1.f, 1.f, 1.f); } return(dnew); } #if DTrmx_native==DTdouble static int rmx_write_float(const rmx_dtype *dp, int len, FILE *fp) { float val; while (len--) { val = (float)*dp++; if (putbinary(&val, sizeof(val), 1, fp) != 1) return(0); } return(1); } #else static int rmx_write_double(const rmx_dtype *dp, int len, FILE *fp) { double val; while (len--) { val = *dp++; if (putbinary(&val, sizeof(val), 1, fp) != 1) return(0); } return(1); } #endif static int rmx_write_ascii(const rmx_dtype *dp, int nc, int len, FILE *fp) { while (len-- > 0) { int k = nc; while (k-- > 0) fprintf(fp, " %.7e", *dp++); fputc('\t', fp); } return(fputc('\n', fp) != EOF); } static int rmx_write_rgbe(const rmx_dtype *dp, int nc, int len, FILE *fp) { COLR *scan; int j; if ((nc != 1) & (nc != 3)) return(0); scan = (COLR *)tempbuffer(sizeof(COLR)*len); if (!scan) return(0); for (j = 0; j < len; j++, dp += nc) if (nc == 1) setcolr(scan[j], dp[0], dp[0], dp[0]); else setcolr(scan[j], dp[0], dp[1], dp[2]); return(fwritecolrs(scan, len, fp) >= 0); } static int rmx_write_spec(const rmx_dtype *dp, int nc, int len, FILE *fp) { COLRV *scan; COLORV scol[MAXCOMP]; int j, k; if ((nc < 3) | (nc > MAXCOMP)) return(0); scan = (COLRV *)tempbuffer((nc+1)*len); if (!scan) return(0); for (j = 0; j < len; j++, dp += nc) { for (k = nc; k--; ) scol[k] = dp[k]; scolor2scolr(scan+j*(nc+1), scol, nc); } return(fwritescolrs(scan, nc, len, fp) >= 0); } /* Check if CIE XYZ primaries were specified */ static int findCIEprims(const char *info) { RGBPRIMS prims; if (!info) return(0); info = strstr(info, PRIMARYSTR); if (!info || !primsval(prims, info)) return(0); return((prims[RED][CIEX] > .99) & (prims[RED][CIEY] < .01) && (prims[GRN][CIEX] < .01) & (prims[GRN][CIEY] > .99) && (prims[BLU][CIEX] < .01) & (prims[BLU][CIEY] < .01)); } /* Finish writing header data with resolution and format, returning type used */ int rmx_write_header(const RMATRIX *rm, int dtype, FILE *fp) { if (!rm | !fp || rm->ncols <= 0) return(0); if (rm->info) fputs(rm->info, fp); if (dtype == DTfromHeader) { dtype = rm->dtype; #if DTrmx_native==DTfloat if (dtype == DTdouble) /* but stored as float? */ dtype = DTfloat; #endif } else if (dtype == DTrgbe && (rm->dtype == DTxyze || findCIEprims(rm->info))) dtype = DTxyze; else if ((dtype == DTxyze) & (rm->dtype == DTrgbe)) dtype = DTrgbe; if ((dtype < DTspec) & (rm->ncomp > 3)) dtype = DTspec; else if ((dtype == DTspec) & (rm->ncomp <= 3)) return(0); if (dtype == DTascii) /* set file type (WINDOWS) */ SET_FILE_TEXT(fp); else SET_FILE_BINARY(fp); /* write exposure? */ if (rm->ncomp == 3 && (rm->cexp[RED] != rm->cexp[GRN]) | (rm->cexp[GRN] != rm->cexp[BLU])) fputcolcor(rm->cexp, fp); else if (rm->cexp[GRN] != 1.f) fputexpos(rm->cexp[GRN], fp); /* matrix size? */ if ((dtype > DTspec) | (rm->nrows <= 0)) { if (rm->nrows > 0) fprintf(fp, "NROWS=%d\n", rm->nrows); fprintf(fp, "NCOLS=%d\n", rm->ncols); } if (dtype >= DTspec) { /* # components & split? */ fputncomp(rm->ncomp, fp); if (rm->ncomp > 3 && memcmp(rm->wlpart, WLPART, sizeof(WLPART))) fputwlsplit(rm->wlpart, fp); } else if ((rm->ncomp != 3) & (rm->ncomp != 1)) return(0); /* wrong # components */ if ((dtype == DTfloat) | (dtype == DTdouble)) fputendian(fp); /* important to record */ fputformat(cm_fmt_id[dtype], fp); fputc('\n', fp); /* end of header */ if ((dtype <= DTspec) & (rm->nrows > 0)) fprtresolu(rm->ncols, rm->nrows, fp); return(dtype); } /* Write out matrix data (usually by row) */ int rmx_write_data(const rmx_dtype *dp, int nc, int len, int dtype, FILE *fp) { switch (dtype) { #if DTrmx_native==DTdouble case DTfloat: return(rmx_write_float(dp, nc*len, fp)); #else case DTdouble: return(rmx_write_double(dp, nc*len, fp)); #endif case DTrmx_native: return(putbinary(dp, sizeof(*dp)*nc, len, fp) == len); case DTascii: return(rmx_write_ascii(dp, nc, len, fp)); case DTrgbe: case DTxyze: return(rmx_write_rgbe(dp, nc, len, fp)); case DTspec: return(rmx_write_spec(dp, nc, len, fp)); } return(0); } /* Write matrix using file format indicated by dtype */ int rmx_write(const RMATRIX *rm, int dtype, FILE *fp) { int ok = 0; int i; /* complete header */ dtype = rmx_write_header(rm, dtype, fp); if (dtype <= 0) return(0); #ifdef getc_unlocked flockfile(fp); #endif if (dtype == DTrmx_native) /* write all at once? */ ok = rmx_write_data(rm->mtx, rm->ncomp, rm->nrows*rm->ncols, dtype, fp); else /* else row by row */ for (i = 0; i < rm->nrows; i++) { ok = rmx_write_data(rmx_val(rm,i,0), rm->ncomp, rm->ncols, dtype, fp); if (!ok) break; } if (ok) ok = (fflush(fp) == 0); #ifdef getc_unlocked funlockfile(fp); #endif if (!ok) fputs("Error writing matrix\n", stderr); return(ok); } /* Allocate and assign square identity matrix with n components */ RMATRIX * rmx_identity(const int dim, const int n) { RMATRIX *rid = rmx_alloc(dim, dim, n); int i, k; if (!rid) return(NULL); memset(rid->mtx, 0, rmx_array_size(rid)); for (i = dim; i--; ) { rmx_dtype *dp = rmx_lval(rid,i,i); for (k = n; k--; ) dp[k] = 1.; } return(rid); } /* Duplicate the given matrix (may be unallocated) */ RMATRIX * rmx_copy(const RMATRIX *rm) { RMATRIX *dnew; if (!rm) return(NULL); dnew = rmx_new(rm->nrows, rm->ncols, rm->ncomp); if (!dnew) return(NULL); if (rm->mtx) { if (!rmx_prepare(dnew)) { rmx_free(dnew); return(NULL); } memcpy(dnew->mtx, rm->mtx, rmx_array_size(dnew)); } rmx_addinfo(dnew, rm->info); dnew->dtype = rm->dtype; copycolor(dnew->cexp, rm->cexp); memcpy(dnew->wlpart, rm->wlpart, sizeof(dnew->wlpart)); return(dnew); } /* Replace data in first matrix with data from second */ int rmx_transfer_data(RMATRIX *rdst, RMATRIX *rsrc, int dometa) { if (!rdst | !rsrc) return(0); if (dometa) { /* transfer everything? */ rmx_reset(rdst); *rdst = *rsrc; rsrc->info = NULL; rsrc->mapped = NULL; rsrc->mtx = NULL; return(1); } /* just matrix data -- leave metadata */ if ((rdst->nrows != rsrc->nrows) | (rdst->ncols != rsrc->ncols) | (rdst->ncomp != rsrc->ncomp)) return(0); #ifdef MAP_FILE if (rdst->mapped) munmap(rdst->mapped, rmx_mapped_size(rdst)); else #endif if (rdst->pflags & RMF_FREEMEM) { free(rdst->mtx); rdst->pflags &= ~RMF_FREEMEM; } rdst->mapped = rsrc->mapped; rdst->mtx = rsrc->mtx; rdst->pflags |= rsrc->pflags & RMF_FREEMEM; rsrc->mapped = NULL; rsrc->mtx = NULL; return(1); } /* Transpose the given matrix */ int rmx_transpose(RMATRIX *rm) { uby8 *bmap; rmx_dtype val[MAXCOMP]; RMATRIX dold; int i, j; if (!rm || !rm->mtx | (rm->ncomp > MAXCOMP)) return(0); if (rm->info) rmx_addinfo(rm, "Transposed rows and columns\n"); if ((rm->nrows == 1) | (rm->ncols == 1)) { /* vector? */ j = rm->ncols; rm->ncols = rm->nrows; rm->nrows = j; return(1); } if (rm->nrows == rm->ncols) { /* square matrix case */ for (i = rm->nrows; i--; ) for (j = rm->ncols; j--; ) { if (i == j) continue; memcpy(val, rmx_val(rm,i,j), sizeof(rmx_dtype)*rm->ncomp); memcpy(rmx_lval(rm,i,j), rmx_val(rm,j,i), sizeof(rmx_dtype)*rm->ncomp); memcpy(rmx_val(rm,j,i), val, sizeof(rmx_dtype)*rm->ncomp); } return(1); } #define bmbyte(r,c) bmap[((r)*rm->ncols+(c))>>3] #define bmbit(r,c) (1 << ((r)*rm->ncols+(c) & 7)) #define bmop(r,c, op) (bmbyte(r,c) op bmbit(r,c)) #define bmtest(r,c) bmop(r,c,&) #define bmset(r,c) bmop(r,c,|=) /* loop completion bitmap */ bmap = (uby8 *)calloc(((size_t)rm->nrows*rm->ncols+7)>>3, 1); if (!bmap) return(0); dold = *rm; rm->ncols = dold.nrows; rm->nrows = dold.ncols; for (i = rm->nrows; i--; ) /* try every starting point */ for (j = rm->ncols; j--; ) { int i0, j0; int i1 = i; size_t j1 = j; if (bmtest(i, j)) continue; /* traversed loop earlier */ memcpy(val, rmx_val(rm,i,j), sizeof(rmx_dtype)*rm->ncomp); for ( ; ; ) { /* new transpose loop */ const rmx_dtype *ds; i0 = i1; j0 = j1; ds = rmx_val(&dold, j0, i0); j1 = (ds - dold.mtx)/dold.ncomp; i1 = j1 / rm->ncols; j1 -= (size_t)i1*rm->ncols; bmset(i1, j1); /* mark as done */ if ((i1 == i) & (j1 == j)) break; /* back at start */ memcpy(rmx_lval(rm,i0,j0), ds, sizeof(rmx_dtype)*rm->ncomp); } /* complete the loop */ memcpy(rmx_lval(rm,i0,j0), val, sizeof(rmx_dtype)*rm->ncomp); } free(bmap); /* all done! */ return(1); #undef bmbyte #undef bmbit #undef bmop #undef bmtest #undef bmset } /* Multiply (concatenate) two matrices and allocate the result */ RMATRIX * rmx_multiply(const RMATRIX *m1, const RMATRIX *m2) { RMATRIX *mres; int i, j, k, h; if (!m1 | !m2 || !m1->mtx | !m2->mtx | (m1->ncomp != m2->ncomp) | (m1->ncols != m2->nrows)) return(NULL); mres = rmx_alloc(m1->nrows, m2->ncols, m1->ncomp); if (!mres) return(NULL); i = rmx_newtype(m1->dtype, m2->dtype); if (i) mres->dtype = i; else rmx_addinfo(mres, rmx_mismatch_warn); for (i = mres->nrows; i--; ) for (j = mres->ncols; j--; ) for (k = mres->ncomp; k--; ) { double d = 0; for (h = m1->ncols; h--; ) d += (double)rmx_val(m1,i,h)[k] * rmx_val(m2,h,j)[k]; rmx_lval(mres,i,j)[k] = (rmx_dtype)d; } return(mres); } /* Element-wise multiplication (or division) of m2 into m1 */ int rmx_elemult(RMATRIX *m1, const RMATRIX *m2, int divide) { int zeroDivides = 0; int i, j, k; if (!m1 | !m2 || !m1->mtx | !m2->mtx | (m1->ncols != m2->ncols) | (m1->nrows != m2->nrows)) return(0); if ((m2->ncomp > 1) & (m2->ncomp != m1->ncomp)) return(0); i = rmx_newtype(m1->dtype, m2->dtype); if (i) m1->dtype = i; else rmx_addinfo(m1, rmx_mismatch_warn); for (i = m1->nrows; i--; ) for (j = m1->ncols; j--; ) if (divide) { rmx_dtype d; if (m2->ncomp == 1) { d = rmx_val(m2,i,j)[0]; if (d == 0) { ++zeroDivides; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] = 0; } else { d = 1./d; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= d; } } else for (k = m1->ncomp; k--; ) { d = rmx_val(m2,i,j)[k]; if (d == 0) { ++zeroDivides; rmx_lval(m1,i,j)[k] = 0; } else rmx_lval(m1,i,j)[k] /= d; } } else { if (m2->ncomp == 1) { const rmx_dtype d = rmx_val(m2,i,j)[0]; for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= d; } else for (k = m1->ncomp; k--; ) rmx_lval(m1,i,j)[k] *= rmx_val(m2,i,j)[k]; } if (zeroDivides) { rmx_addinfo(m1, "WARNING: zero divide(s) corrupted results\n"); errno = ERANGE; } return(1); } /* Sum second matrix into first, applying scale factor beforehand */ int rmx_sum(RMATRIX *msum, const RMATRIX *madd, const double sf[]) { double *mysf = NULL; int i, j, k; if (!msum | !madd || !msum->mtx | !madd->mtx | (msum->nrows != madd->nrows) | (msum->ncols != madd->ncols) | (msum->ncomp != madd->ncomp)) return(0); if (!sf) { mysf = (double *)malloc(sizeof(double)*msum->ncomp); if (!mysf) return(0); for (k = msum->ncomp; k--; ) mysf[k] = 1; sf = mysf; } i = rmx_newtype(msum->dtype, madd->dtype); if (i) msum->dtype = i; else rmx_addinfo(msum, rmx_mismatch_warn); for (i = msum->nrows; i--; ) for (j = msum->ncols; j--; ) { const rmx_dtype *da = rmx_val(madd,i,j); rmx_dtype *ds = rmx_lval(msum,i,j); for (k = msum->ncomp; k--; ) ds[k] += (rmx_dtype)sf[k] * da[k]; } if (mysf) free(mysf); return(1); } /* Scale the given matrix by the indicated scalar component vector */ int rmx_scale(RMATRIX *rm, const double sf[]) { int i, j, k; if (!rm | !sf || !rm->mtx) return(0); for (i = rm->nrows; i--; ) for (j = rm->ncols; j--; ) { rmx_dtype *dp = rmx_lval(rm,i,j); for (k = rm->ncomp; k--; ) dp[k] *= (rmx_dtype)sf[k]; } if (rm->info) rmx_addinfo(rm, "Applied scalar\n"); /* XXX: should record as exposure for COLR and SCOLR types? */ return(1); } /* Allocate new matrix and apply component transformation */ RMATRIX * rmx_transform(const RMATRIX *msrc, int n, const double cmat[]) { int i, j, ks, kd; RMATRIX *dnew; if (!msrc | (n <= 0) | !cmat || !msrc->mtx) return(NULL); dnew = rmx_alloc(msrc->nrows, msrc->ncols, n); if (!dnew) return(NULL); if (msrc->info) { char buf[128]; sprintf(buf, "Applied %dx%d component transform\n", dnew->ncomp, msrc->ncomp); rmx_addinfo(dnew, msrc->info); rmx_addinfo(dnew, buf); } dnew->dtype = msrc->dtype; for (i = dnew->nrows; i--; ) for (j = dnew->ncols; j--; ) { const rmx_dtype *ds = rmx_val(msrc,i,j); for (kd = dnew->ncomp; kd--; ) { double d = 0; for (ks = msrc->ncomp; ks--; ) d += cmat[kd*msrc->ncomp + ks] * ds[ks]; rmx_lval(dnew,i,j)[kd] = (rmx_dtype)d; } } return(dnew); }