#ifndef lint static const char RCSid[] = "$Id: rfluxmtx.c,v 2.49 2019/12/10 19:15:54 greg Exp $"; #endif /* * Calculate flux transfer matrix or matrices using rcontrib */ #include "copyright.h" #include #include #include "rtio.h" #include "rtmath.h" #include "paths.h" #include "bsdf.h" #include "bsdf_m.h" #include "random.h" #include "triangulate.h" #include "platform.h" #ifndef MAXRCARG #define MAXRCARG 10000 #endif char *progname; /* global argv[0] */ int verbose = 0; /* verbose mode (< 0 no warnings) */ char *rcarg[MAXRCARG+1] = {"rcontrib", "-fo+"}; int nrcargs = 2; const char overflowerr[] = "%s: too many arguments!\n"; #define CHECKARGC(n) if (nrcargs >= MAXRCARG-(n)) \ { fprintf(stderr, overflowerr, progname); exit(1); } int sampcnt = 0; /* sample count (0==unset) */ char *reinhfn = "reinhartb.cal"; char *shirchiufn = "disk2square.cal"; char *kfullfn = "klems_full.cal"; char *khalffn = "klems_half.cal"; char *kquarterfn = "klems_quarter.cal"; /* string indicating parameters */ const char PARAMSTART[] = "@rfluxmtx"; /* surface type IDs */ #define ST_NONE 0 #define ST_POLY 1 #define ST_RING 2 #define ST_SOURCE 3 typedef struct surf_s { struct surf_s *next; /* next surface in list */ void *priv; /* private data (malloc'ed) */ char sname[32]; /* surface name */ FVECT snrm; /* surface normal */ double area; /* surface area / proj. solid angle */ short styp; /* surface type */ short nfargs; /* number of real arguments */ double farg[1]; /* real values (extends struct) */ } SURF; /* surface structure */ typedef struct { FVECT uva[2]; /* tangent axes */ int ntris; /* number of triangles */ struct ptri { double afrac; /* fraction of total area */ short vndx[3]; /* vertex indices */ } tri[1]; /* triangle array (extends struct) */ } POLYTRIS; /* triangulated polygon */ typedef struct param_s { char sign; /* '-' for axis reversal */ char hemis[31]; /* hemispherical sampling spec. */ int hsiz; /* hemisphere basis size */ int nsurfs; /* number of surfaces */ SURF *slist; /* list of surfaces */ FVECT vup; /* up vector (zero if unset) */ FVECT nrm; /* average normal direction */ FVECT udir, vdir; /* tangent axes */ char *outfn; /* output file name (receiver) */ int (*sample_basis)(struct param_s *p, int, FILE *); } PARAMS; /* sender/receiver parameters */ PARAMS curparams; char curmod[128]; char newparams[1024]; typedef int SURFSAMP(FVECT, SURF *, double); static SURFSAMP ssamp_bad, ssamp_poly, ssamp_ring; SURFSAMP *orig_in_surf[4] = { ssamp_bad, ssamp_poly, ssamp_ring, ssamp_bad }; /* Clear parameter set */ static void clear_params(PARAMS *p, int reset_only) { while (p->slist != NULL) { SURF *sdel = p->slist; p->slist = sdel->next; if (sdel->priv != NULL) free(sdel->priv); free(sdel); } if (reset_only) { p->nsurfs = 0; memset(p->nrm, 0, sizeof(FVECT)); memset(p->vup, 0, sizeof(FVECT)); p->outfn = NULL; return; } memset(p, 0, sizeof(PARAMS)); } /* Get surface type from name */ static int surf_type(const char *otype) { if (!strcmp(otype, "polygon")) return(ST_POLY); if (!strcmp(otype, "ring")) return(ST_RING); if (!strcmp(otype, "source")) return(ST_SOURCE); return(ST_NONE); } /* Add arguments to oconv command */ static char * oconv_command(int ac, char *av[]) { static char oconvbuf[2048] = "!oconv -f "; char *cp = oconvbuf + 10; char *recv = *av++; if (ac-- <= 0) return(NULL); if (verbose < 0) { /* turn off warnings */ strcpy(cp, "-w "); cp += 4; } while (ac-- > 0) { /* copy each argument */ int len = strlen(*av); if (cp+len+4 >= oconvbuf+sizeof(oconvbuf)) goto overrun; if (matchany(*av, SPECIALS)) { *cp++ = QUOTCHAR; strcpy(cp, *av++); cp += len; *cp++ = QUOTCHAR; } else { strcpy(cp, *av++); cp += len; } *cp++ = ' '; } /* receiver goes last */ if (matchany(recv, SPECIALS)) { *cp++ = QUOTCHAR; while (*recv) { if (cp >= oconvbuf+(sizeof(oconvbuf)-3)) goto overrun; *cp++ = *recv++; } *cp++ = QUOTCHAR; *cp = '\0'; } else strcpy(cp, recv); return(oconvbuf); overrun: fputs(progname, stderr); fputs(": too many file arguments!\n", stderr); exit(1); } /* Open a pipe to/from a command given as an argument list */ static FILE * popen_arglist(char *av[], char *mode) { char cmd[10240]; if (!convert_commandline(cmd, sizeof(cmd), av)) { fputs(progname, stderr); fputs(": command line too long in popen_arglist()\n", stderr); return(NULL); } if (verbose > 0) fprintf(stderr, "%s: opening pipe %s: %s\n", progname, (*mode=='w') ? "to" : "from", cmd); return(popen(cmd, mode)); } #if defined(_WIN32) || defined(_WIN64) /* Execute system command (Windows version) */ static int my_exec(char *av[]) { char cmd[10240]; if (!convert_commandline(cmd, sizeof(cmd), av)) { fputs(progname, stderr); fputs(": command line too long in my_exec()\n", stderr); return(1); } if (verbose > 0) fprintf(stderr, "%s: running: %s\n", progname, cmd); return(system(cmd)); } #else /* Execute system command in our stead (Unix version) */ static int my_exec(char *av[]) { char *compath; if ((compath = getpath((char *)av[0], getenv("PATH"), X_OK)) == NULL) { fprintf(stderr, "%s: cannot locate %s\n", progname, av[0]); return(1); } if (verbose > 0) { char cmd[4096]; if (!convert_commandline(cmd, sizeof(cmd), av)) strcpy(cmd, "COMMAND TOO LONG TO SHOW"); fprintf(stderr, "%s: running: %s\n", progname, cmd); } execv(compath, av); /* successful call never returns */ perror(compath); return(1); } #endif /* Get normalized direction vector from string specification */ static int get_direction(FVECT dv, const char *s) { int sign = 1; int axis = 0; memset(dv, 0, sizeof(FVECT)); nextchar: switch (*s) { case '+': ++s; goto nextchar; case '-': sign = -sign; ++s; goto nextchar; case 'z': case 'Z': ++axis; case 'y': case 'Y': ++axis; case 'x': case 'X': dv[axis] = sign; return(!s[1] | isspace(s[1])); default: break; } #ifdef SMLFLT if (sscanf(s, "%f,%f,%f", &dv[0], &dv[1], &dv[2]) != 3) #else if (sscanf(s, "%lf,%lf,%lf", &dv[0], &dv[1], &dv[2]) != 3) #endif return(0); dv[0] *= (RREAL)sign; return(normalize(dv) > 0); } /* Parse program parameters (directives) */ static int parse_params(PARAMS *p, char *pargs) { char *cp = pargs; int nparams = 0; int quot; int i; for ( ; ; ) { switch (*cp++) { case 'h': if (*cp++ != '=') break; if ((*cp == '+') | (*cp == '-')) p->sign = *cp++; else p->sign = '+'; p->hsiz = 0; i = 0; while (*cp && !isspace(*cp)) { if (isdigit(*cp)) p->hsiz = 10*p->hsiz + *cp - '0'; p->hemis[i++] = *cp++; } if (!i) break; p->hemis[i] = '\0'; p->hsiz += !p->hsiz; ++nparams; continue; case 'u': if (*cp++ != '=') break; if (!get_direction(p->vup, cp)) break; while (*cp && !isspace(*cp++)) ; ++nparams; continue; case 'o': if (*cp++ != '=') break; quot = 0; if ((*cp == '"') | (*cp == '\'')) quot = *cp++; i = 0; while (*cp && (quot ? (*cp != quot) : !isspace(*cp))) { i++; cp++; } if (!i) break; if (!*cp) { if (quot) break; cp[1] = '\0'; } *cp = '\0'; p->outfn = savqstr(cp-i); *cp++ = quot ? quot : ' '; ++nparams; continue; case ' ': case '\t': case '\r': case '\n': continue; case '\0': return(nparams); default: break; } break; } fprintf(stderr, "%s: bad parameter string: %s", progname, pargs); exit(1); return(-1); /* pro forma return */ } /* Add receiver arguments (directives) corresponding to the current modifier */ static void finish_receiver(void) { char sbuf[256]; int uniform = 0; char *calfn = NULL; char *params = NULL; char *binv = NULL; char *binf = NULL; char *nbins = NULL; if (!curmod[0]) { fputs(progname, stderr); fputs(": missing receiver surface!\n", stderr); exit(1); } if (curparams.outfn != NULL) { /* add output file spec. */ CHECKARGC(2); rcarg[nrcargs++] = "-o"; rcarg[nrcargs++] = curparams.outfn; } /* check arguments */ if (!curparams.hemis[0]) { fputs(progname, stderr); fputs(": missing hemisphere sampling type!\n", stderr); exit(1); } if (normalize(curparams.nrm) == 0) { fputs(progname, stderr); fputs(": undefined normal for hemisphere sampling\n", stderr); exit(1); } if (normalize(curparams.vup) == 0) { if (fabs(curparams.nrm[2]) < .7) curparams.vup[2] = 1; else curparams.vup[1] = 1; } /* determine sample type/bin */ if ((tolower(curparams.hemis[0]) == 'u') | (curparams.hemis[0] == '1')) { sprintf(sbuf, "if(-Dx*%g-Dy*%g-Dz*%g,0,-1)", curparams.nrm[0], curparams.nrm[1], curparams.nrm[2]); binv = savqstr(sbuf); nbins = "1"; /* uniform sampling -- one bin */ uniform = 1; } else if (tolower(curparams.hemis[0]) == 's' && tolower(curparams.hemis[1]) == 'c') { /* assign parameters */ if (curparams.hsiz <= 1) { fputs(progname, stderr); fputs(": missing size for Shirley-Chiu sampling!\n", stderr); exit(1); } calfn = shirchiufn; shirchiufn = NULL; sprintf(sbuf, "SCdim=%d,rNx=%g,rNy=%g,rNz=%g,Ux=%g,Uy=%g,Uz=%g,RHS=%c1", curparams.hsiz, curparams.nrm[0], curparams.nrm[1], curparams.nrm[2], curparams.vup[0], curparams.vup[1], curparams.vup[2], curparams.sign); params = savqstr(sbuf); binv = "scbin"; nbins = "SCdim*SCdim"; } else if ((tolower(curparams.hemis[0]) == 'r') | (tolower(curparams.hemis[0]) == 't')) { calfn = reinhfn; reinhfn = NULL; sprintf(sbuf, "MF=%d,rNx=%g,rNy=%g,rNz=%g,Ux=%g,Uy=%g,Uz=%g,RHS=%c1", curparams.hsiz, curparams.nrm[0], curparams.nrm[1], curparams.nrm[2], curparams.vup[0], curparams.vup[1], curparams.vup[2], curparams.sign); params = savqstr(sbuf); binv = "rbin"; nbins = "Nrbins"; } else if (tolower(curparams.hemis[0]) == 'k' && !curparams.hemis[1] | (tolower(curparams.hemis[1]) == 'f') | (curparams.hemis[1] == '1')) { calfn = kfullfn; kfullfn = NULL; binf = "kbin"; nbins = "Nkbins"; } else if (tolower(curparams.hemis[0]) == 'k' && (tolower(curparams.hemis[1]) == 'h') | (curparams.hemis[1] == '2')) { calfn = khalffn; khalffn = NULL; binf = "khbin"; nbins = "Nkhbins"; } else if (tolower(curparams.hemis[0]) == 'k' && (tolower(curparams.hemis[1]) == 'q') | (curparams.hemis[1] == '4')) { calfn = kquarterfn; kquarterfn = NULL; binf = "kqbin"; nbins = "Nkqbins"; } else { fprintf(stderr, "%s: unrecognized hemisphere sampling: h=%s\n", progname, curparams.hemis); exit(1); } if (tolower(curparams.hemis[0]) == 'k') { sprintf(sbuf, "RHS=%c1", curparams.sign); params = savqstr(sbuf); } if (!uniform & (curparams.slist->styp == ST_SOURCE)) { SURF *sp; for (sp = curparams.slist; sp != NULL; sp = sp->next) if (fabs(sp->area - PI) > 1e-3) { fprintf(stderr, "%s: source '%s' must be 180-degrees\n", progname, sp->sname); exit(1); } } if (calfn != NULL) { /* add cal file if needed */ CHECKARGC(2); rcarg[nrcargs++] = "-f"; rcarg[nrcargs++] = calfn; } if (params != NULL) { /* parameters _after_ cal file */ CHECKARGC(2); rcarg[nrcargs++] = "-p"; rcarg[nrcargs++] = params; } if (nbins != NULL) { /* add #bins if set */ CHECKARGC(2); rcarg[nrcargs++] = "-bn"; rcarg[nrcargs++] = nbins; } if (binv != NULL) { CHECKARGC(2); /* assign bin variable */ rcarg[nrcargs++] = "-b"; rcarg[nrcargs++] = binv; } else if (binf != NULL) { CHECKARGC(2); /* assign bin function */ rcarg[nrcargs++] = "-b"; sprintf(sbuf, "%s(%g,%g,%g,%g,%g,%g)", binf, curparams.nrm[0], curparams.nrm[1], curparams.nrm[2], curparams.vup[0], curparams.vup[1], curparams.vup[2]); rcarg[nrcargs++] = savqstr(sbuf); } CHECKARGC(2); /* modifier argument goes last */ rcarg[nrcargs++] = "-m"; rcarg[nrcargs++] = savqstr(curmod); } /* Make randomly oriented tangent plane axes for given normal direction */ static void make_axes(FVECT uva[2], const FVECT nrm) { int i; if (!getperpendicular(uva[0], nrm, 1)) { fputs(progname, stderr); fputs(": bad surface normal in make_axes!\n", stderr); exit(1); } fcross(uva[1], nrm, uva[0]); } /* Illegal sender surfaces end up here */ static int ssamp_bad(FVECT orig, SURF *sp, double x) { fprintf(stderr, "%s: illegal sender surface '%s'\n", progname, sp->sname); return(0); } /* Generate origin on ring surface from uniform random variable */ static int ssamp_ring(FVECT orig, SURF *sp, double x) { FVECT *uva = (FVECT *)sp->priv; double samp2[2]; double uv[2]; int i; if (uva == NULL) { /* need tangent axes */ uva = (FVECT *)malloc(sizeof(FVECT)*2); if (uva == NULL) { fputs(progname, stderr); fputs(": out of memory in ssamp_ring!\n", stderr); return(0); } make_axes(uva, sp->snrm); sp->priv = (void *)uva; } SDmultiSamp(samp2, 2, x); samp2[0] = sqrt(samp2[0]*sp->area*(1./PI) + sp->farg[6]*sp->farg[6]); samp2[1] *= 2.*PI; uv[0] = samp2[0]*tcos(samp2[1]); uv[1] = samp2[0]*tsin(samp2[1]); for (i = 3; i--; ) orig[i] = sp->farg[i] + uv[0]*uva[0][i] + uv[1]*uva[1][i]; return(1); } /* Add triangle to polygon's list (call-back function) */ static int add_triangle(const Vert2_list *tp, int a, int b, int c) { POLYTRIS *ptp = (POLYTRIS *)tp->p; struct ptri *trip = ptp->tri + ptp->ntris++; trip->vndx[0] = a; trip->vndx[1] = b; trip->vndx[2] = c; return(1); } /* Generate origin on polygon surface from uniform random variable */ static int ssamp_poly(FVECT orig, SURF *sp, double x) { POLYTRIS *ptp = (POLYTRIS *)sp->priv; double samp2[2]; double *v0, *v1, *v2; int i; if (ptp == NULL) { /* need to triangulate */ ptp = (POLYTRIS *)malloc(sizeof(POLYTRIS) + sizeof(struct ptri)*(sp->nfargs/3 - 3)); if (ptp == NULL) goto memerr; if (sp->nfargs == 3) { /* simple case */ ptp->ntris = 1; ptp->tri[0].vndx[0] = 0; ptp->tri[0].vndx[1] = 1; ptp->tri[0].vndx[2] = 2; ptp->tri[0].afrac = 1; } else { Vert2_list *v2l = polyAlloc(sp->nfargs/3); if (v2l == NULL) goto memerr; make_axes(ptp->uva, sp->snrm); for (i = v2l->nv; i--; ) { v2l->v[i].mX = DOT(sp->farg+3*i, ptp->uva[0]); v2l->v[i].mY = DOT(sp->farg+3*i, ptp->uva[1]); } ptp->ntris = 0; v2l->p = (void *)ptp; if (!polyTriangulate(v2l, add_triangle)) { fprintf(stderr, "%s: cannot triangulate polygon '%s'\n", progname, sp->sname); return(0); } for (i = ptp->ntris; i--; ) { int a = ptp->tri[i].vndx[0]; int b = ptp->tri[i].vndx[1]; int c = ptp->tri[i].vndx[2]; ptp->tri[i].afrac = (v2l->v[a].mX*v2l->v[b].mY - v2l->v[b].mX*v2l->v[a].mY + v2l->v[b].mX*v2l->v[c].mY - v2l->v[c].mX*v2l->v[b].mY + v2l->v[c].mX*v2l->v[a].mY - v2l->v[a].mX*v2l->v[c].mY) / (2.*sp->area); } polyFree(v2l); } sp->priv = (void *)ptp; } /* pick triangle by partial area */ for (i = 0; i < ptp->ntris-1 && x > ptp->tri[i].afrac; i++) x -= ptp->tri[i].afrac; SDmultiSamp(samp2, 2, x/ptp->tri[i].afrac); samp2[0] *= samp2[1] = sqrt(samp2[1]); samp2[1] = 1. - samp2[1]; v0 = sp->farg + 3*ptp->tri[i].vndx[0]; v1 = sp->farg + 3*ptp->tri[i].vndx[1]; v2 = sp->farg + 3*ptp->tri[i].vndx[2]; for (i = 3; i--; ) orig[i] = v0[i] + samp2[0]*(v1[i] - v0[i]) + samp2[1]*(v2[i] - v0[i]) ; return(1); memerr: fputs(progname, stderr); fputs(": out of memory in ssamp_poly!\n", stderr); return(0); } /* Compute sample origin based on projected areas of sender subsurfaces */ static int sample_origin(PARAMS *p, FVECT orig, const FVECT rdir, double x) { static double *projsa; static int nall; double tarea = 0; int i; SURF *sp; /* special case for lone surface */ if (p->nsurfs == 1) { sp = p->slist; if (DOT(sp->snrm, rdir) >= FTINY) { fprintf(stderr, "%s: internal - sample behind sender '%s'\n", progname, sp->sname); return(0); } return((*orig_in_surf[sp->styp])(orig, sp, x)); } if (p->nsurfs > nall) { /* (re)allocate surface area cache */ if (projsa) free(projsa); projsa = (double *)malloc(sizeof(double)*p->nsurfs); if (projsa == NULL) { fputs(progname, stderr); fputs(": out of memory in sample_origin!\n", stderr); exit(1); } nall = p->nsurfs; } /* compute projected areas */ for (i = 0, sp = p->slist; sp != NULL; i++, sp = sp->next) { projsa[i] = -DOT(sp->snrm, rdir) * sp->area; tarea += projsa[i] *= (double)(projsa[i] > FTINY); } if (tarea < 0) { /* wrong side of sender? */ fputs(progname, stderr); fputs(": internal - sample behind all sender elements!\n", stderr); return(0); } tarea *= x; /* get surface from list */ for (i = 0, sp = p->slist; tarea > projsa[i]; sp = sp->next) tarea -= projsa[i++]; return((*orig_in_surf[sp->styp])(orig, sp, tarea/projsa[i])); } /* Uniform sample generator */ static int sample_uniform(PARAMS *p, int b, FILE *fp) { int n = sampcnt; double samp3[3]; double duvw[3]; FVECT orig_dir[2]; int i; if (fp == NULL) /* just requesting number of bins? */ return(1); while (n--) { /* stratified hemisphere sampling */ SDmultiSamp(samp3, 3, (n+frandom())/sampcnt); SDsquare2disk(duvw, samp3[1], samp3[2]); duvw[2] = -sqrt(1. - duvw[0]*duvw[0] - duvw[1]*duvw[1]); for (i = 3; i--; ) orig_dir[1][i] = duvw[0]*p->udir[i] + duvw[1]*p->vdir[i] + duvw[2]*p->nrm[i] ; if (!sample_origin(p, orig_dir[0], orig_dir[1], samp3[0])) return(0); if (putbinary(orig_dir, sizeof(FVECT), 2, fp) != 2) return(0); } return(1); } /* Shirly-Chiu sample generator */ static int sample_shirchiu(PARAMS *p, int b, FILE *fp) { int n = sampcnt; double samp3[3]; double duvw[3]; FVECT orig_dir[2]; int i; if (fp == NULL) /* just requesting number of bins? */ return(p->hsiz*p->hsiz); while (n--) { /* stratified sampling */ SDmultiSamp(samp3, 3, (n+frandom())/sampcnt); SDsquare2disk(duvw, (b/p->hsiz + samp3[1])/curparams.hsiz, (b%p->hsiz + samp3[2])/curparams.hsiz); duvw[2] = sqrt(1. - duvw[0]*duvw[0] - duvw[1]*duvw[1]); for (i = 3; i--; ) orig_dir[1][i] = -duvw[0]*p->udir[i] - duvw[1]*p->vdir[i] - duvw[2]*p->nrm[i] ; if (!sample_origin(p, orig_dir[0], orig_dir[1], samp3[0])) return(0); if (putbinary(orig_dir, sizeof(FVECT), 2, fp) != 2) return(0); } return(1); } /* Reinhart/Tregenza sample generator */ static int sample_reinhart(PARAMS *p, int b, FILE *fp) { #define T_NALT 7 static const int tnaz[T_NALT] = {30, 30, 24, 24, 18, 12, 6}; const int RowMax = T_NALT*p->hsiz + 1; const double RAH = (.5*PI)/(RowMax-.5); #define rnaz(r) (r >= RowMax-1 ? 1 : p->hsiz*tnaz[r/p->hsiz]) int n = sampcnt; int row, col; double samp3[3]; double alt, azi; double duvw[3]; FVECT orig_dir[2]; int i; if (fp == NULL) { /* just requesting number of bins? */ n = 0; for (row = RowMax; row--; ) n += rnaz(row); return(n); } row = 0; /* identify row & column */ col = b; while (col >= rnaz(row)) { col -= rnaz(row); ++row; } while (n--) { /* stratified sampling */ SDmultiSamp(samp3, 3, (n+frandom())/sampcnt); if (row >= RowMax-1) /* avoid crowding at zenith */ samp3[1] *= samp3[1]; alt = (row+samp3[1])*RAH; azi = (2.*PI)*(col+samp3[2]-.5)/rnaz(row); duvw[2] = cos(alt); /* measured from horizon */ duvw[0] = tsin(azi)*duvw[2]; duvw[1] = -tcos(azi)*duvw[2]; duvw[2] = sqrt(1. - duvw[2]*duvw[2]); for (i = 3; i--; ) orig_dir[1][i] = -duvw[0]*p->udir[i] - duvw[1]*p->vdir[i] - duvw[2]*p->nrm[i] ; if (!sample_origin(p, orig_dir[0], orig_dir[1], samp3[0])) return(0); if (putbinary(orig_dir, sizeof(FVECT), 2, fp) != 2) return(0); } return(1); #undef rnaz #undef T_NALT } /* Klems sample generator */ static int sample_klems(PARAMS *p, int b, FILE *fp) { static const char bname[4][20] = { "LBNL/Klems Full", "LBNL/Klems Half", "INTERNAL ERROR", "LBNL/Klems Quarter" }; static ANGLE_BASIS *kbasis[4]; const int bi = p->hemis[1] - '1'; int n = sampcnt; double samp2[2]; double duvw[3]; FVECT orig_dir[2]; int i; if (!kbasis[bi]) { /* need to get basis, first */ for (i = 4; i--; ) if (!strcasecmp(abase_list[i].name, bname[bi])) { kbasis[bi] = &abase_list[i]; break; } if (i < 0) { fprintf(stderr, "%s: unknown hemisphere basis '%s'\n", progname, bname[bi]); return(0); } } if (fp == NULL) /* just requesting number of bins? */ return(kbasis[bi]->nangles); while (n--) { /* stratified sampling */ SDmultiSamp(samp2, 2, (n+frandom())/sampcnt); if (!fo_getvec(duvw, b+samp2[1], kbasis[bi])) return(0); for (i = 3; i--; ) orig_dir[1][i] = -duvw[0]*p->udir[i] - duvw[1]*p->vdir[i] - duvw[2]*p->nrm[i] ; if (!sample_origin(p, orig_dir[0], orig_dir[1], samp2[0])) return(0); if (putbinary(orig_dir, sizeof(FVECT), 2, fp) != 2) return(0); } return(1); } /* Prepare hemisphere basis sampler that will send rays to rcontrib */ static int prepare_sampler(void) { if (curparams.slist == NULL) { /* missing sample surface! */ fputs(progname, stderr); fputs(": no sender surface!\n", stderr); return(-1); } /* misplaced output file spec. */ if ((curparams.outfn != NULL) & (verbose >= 0)) fprintf(stderr, "%s: warning - ignoring output file in sender ('%s')\n", progname, curparams.outfn); /* check/set basis hemisphere */ if (!curparams.hemis[0]) { fputs(progname, stderr); fputs(": missing sender sampling type!\n", stderr); return(-1); } if (normalize(curparams.nrm) == 0) { fputs(progname, stderr); fputs(": undefined normal for sender sampling\n", stderr); return(-1); } if (normalize(curparams.vup) == 0) { if (fabs(curparams.nrm[2]) < .7) curparams.vup[2] = 1; else curparams.vup[1] = 1; } fcross(curparams.udir, curparams.vup, curparams.nrm); if (normalize(curparams.udir) == 0) { fputs(progname, stderr); fputs(": up vector coincides with sender normal\n", stderr); return(-1); } fcross(curparams.vdir, curparams.nrm, curparams.udir); if (curparams.sign == '-') { /* left-handed coordinate system? */ curparams.udir[0] *= -1.; curparams.udir[1] *= -1.; curparams.udir[2] *= -1.; } if ((tolower(curparams.hemis[0]) == 'u') | (curparams.hemis[0] == '1')) curparams.sample_basis = sample_uniform; else if (tolower(curparams.hemis[0]) == 's' && tolower(curparams.hemis[1]) == 'c') curparams.sample_basis = sample_shirchiu; else if ((tolower(curparams.hemis[0]) == 'r') | (tolower(curparams.hemis[0]) == 't')) curparams.sample_basis = sample_reinhart; else if (tolower(curparams.hemis[0]) == 'k') { switch (curparams.hemis[1]) { case '1': case '2': case '4': break; case 'f': case 'F': case '\0': curparams.hemis[1] = '1'; break; case 'h': case 'H': curparams.hemis[1] = '2'; break; case 'q': case 'Q': curparams.hemis[1] = '4'; break; default: goto unrecognized; } curparams.hemis[2] = '\0'; curparams.sample_basis = sample_klems; } else goto unrecognized; /* return number of bins */ return((*curparams.sample_basis)(&curparams,0,NULL)); unrecognized: fprintf(stderr, "%s: unrecognized sender sampling: h=%s\n", progname, curparams.hemis); return(-1); } /* Compute normal and area for polygon */ static int finish_polygon(SURF *p) { const int nv = p->nfargs / 3; FVECT e1, e2, vc; int i; memset(p->snrm, 0, sizeof(FVECT)); VSUB(e1, p->farg+3, p->farg); for (i = 2; i < nv; i++) { VSUB(e2, p->farg+3*i, p->farg); VCROSS(vc, e1, e2); p->snrm[0] += vc[0]; p->snrm[1] += vc[1]; p->snrm[2] += vc[2]; VCOPY(e1, e2); } p->area = normalize(p->snrm)*0.5; return(p->area > FTINY); } /* Add a surface to our current parameters */ static void add_surface(int st, const char *oname, FILE *fp) { SURF *snew; int n; /* get floating-point arguments */ if (!fscanf(fp, "%d", &n)) return; while (n-- > 0) fscanf(fp, "%*s"); if (!fscanf(fp, "%d", &n)) return; while (n-- > 0) fscanf(fp, "%*d"); if (!fscanf(fp, "%d", &n) || n <= 0) return; snew = (SURF *)malloc(sizeof(SURF) + sizeof(double)*(n-1)); if (snew == NULL) { fputs(progname, stderr); fputs(": out of memory in add_surface!\n", stderr); exit(1); } strncpy(snew->sname, oname, sizeof(snew->sname)-1); snew->sname[sizeof(snew->sname)-1] = '\0'; snew->styp = st; snew->priv = NULL; snew->nfargs = n; for (n = 0; n < snew->nfargs; n++) if (fscanf(fp, "%lf", &snew->farg[n]) != 1) { fprintf(stderr, "%s: error reading arguments for '%s'\n", progname, oname); exit(1); } switch (st) { case ST_RING: if (snew->nfargs != 8) goto badcount; VCOPY(snew->snrm, snew->farg+3); if (normalize(snew->snrm) == 0) goto badnorm; if (snew->farg[7] < snew->farg[6]) { double t = snew->farg[7]; snew->farg[7] = snew->farg[6]; snew->farg[6] = t; } snew->area = PI*(snew->farg[7]*snew->farg[7] - snew->farg[6]*snew->farg[6]); break; case ST_POLY: if (snew->nfargs < 9 || snew->nfargs % 3) goto badcount; finish_polygon(snew); break; case ST_SOURCE: if (snew->nfargs != 4) goto badcount; for (n = 3; n--; ) /* need to reverse "normal" */ snew->snrm[n] = -snew->farg[n]; if (normalize(snew->snrm) == 0) goto badnorm; snew->area = sin((PI/180./2.)*snew->farg[3]); snew->area *= PI*snew->area; break; } if ((snew->area <= FTINY) & (verbose >= 0)) { fprintf(stderr, "%s: warning - zero area for surface '%s'\n", progname, oname); free(snew); return; } VSUM(curparams.nrm, curparams.nrm, snew->snrm, snew->area); snew->next = curparams.slist; curparams.slist = snew; curparams.nsurfs++; return; badcount: fprintf(stderr, "%s: bad argument count for surface element '%s'\n", progname, oname); exit(1); badnorm: fprintf(stderr, "%s: bad orientation for surface element '%s'\n", progname, oname); exit(1); } /* Parse a receiver object (look for modifiers to add to rcontrib command) */ static int add_recv_object(FILE *fp) { int st; char thismod[128], otype[32], oname[128]; int n; if (fscanf(fp, "%s %s %s", thismod, otype, oname) != 3) return(0); /* must have hit EOF! */ if (!strcmp(otype, "alias")) { fscanf(fp, "%*s"); /* skip alias */ return(0); } /* is it a new receiver? */ if ((st = surf_type(otype)) != ST_NONE) { if (curparams.slist != NULL && (st == ST_SOURCE) ^ (curparams.slist->styp == ST_SOURCE)) { fputs(progname, stderr); fputs(": cannot mix source/non-source receivers!\n", stderr); return(-1); } if (strcmp(thismod, curmod)) { if (curmod[0]) { /* output last receiver? */ finish_receiver(); clear_params(&curparams, 1); } parse_params(&curparams, newparams); newparams[0] = '\0'; strcpy(curmod, thismod); } add_surface(st, oname, fp); /* read & store surface */ return(1); } /* else skip arguments */ if (!fscanf(fp, "%d", &n)) return(0); while (n-- > 0) fscanf(fp, "%*s"); if (!fscanf(fp, "%d", &n)) return(0); while (n-- > 0) fscanf(fp, "%*d"); if (!fscanf(fp, "%d", &n)) return(0); while (n-- > 0) fscanf(fp, "%*f"); return(0); } /* Parse a sender object */ static int add_send_object(FILE *fp) { int st; char thismod[128], otype[32], oname[128]; int n; if (fscanf(fp, "%s %s %s", thismod, otype, oname) != 3) return(0); /* must have hit EOF! */ if (!strcmp(otype, "alias")) { fscanf(fp, "%*s"); /* skip alias */ return(0); } /* is it a new surface? */ if ((st = surf_type(otype)) != ST_NONE) { if (st == ST_SOURCE) { fputs(progname, stderr); fputs(": cannot use source as a sender!\n", stderr); return(-1); } if (strcmp(thismod, curmod)) { if (curmod[0]) { fputs(progname, stderr); fputs(": warning - multiple modifiers in sender\n", stderr); } strcpy(curmod, thismod); } parse_params(&curparams, newparams); newparams[0] = '\0'; add_surface(st, oname, fp); /* read & store surface */ return(0); } /* else skip arguments */ if (!fscanf(fp, "%d", &n)) return(0); while (n-- > 0) fscanf(fp, "%*s"); if (!fscanf(fp, "%d", &n)) return(0); while (n-- > 0) fscanf(fp, "%*d"); if (!fscanf(fp, "%d", &n)) return(0); while (n-- > 0) fscanf(fp, "%*f"); return(0); } /* Load a Radiance scene using the given callback function for objects */ static int load_scene(const char *inspec, int (*ocb)(FILE *)) { int rv = 0; char inpbuf[1024]; FILE *fp; int c; if (*inspec == '!') fp = popen(inspec+1, "r"); else fp = fopen(inspec, "r"); if (fp == NULL) { fprintf(stderr, "%s: cannot load '%s'\n", progname, inspec); return(-1); } while ((c = getc(fp)) != EOF) { /* load receiver data */ if (isspace(c)) /* skip leading white space */ continue; if (c == '!') { /* read from a new command */ inpbuf[0] = c; if (fgetline(inpbuf+1, sizeof(inpbuf)-1, fp) != NULL) { if ((c = load_scene(inpbuf, ocb)) < 0) return(c); rv += c; } continue; } if (c == '#') { /* parameters/comment */ if ((c = getc(fp)) == EOF || ungetc(c,fp) == EOF) break; if (!isspace(c) && fscanf(fp, "%s", inpbuf) == 1 && !strcmp(inpbuf, PARAMSTART)) { if (fgets(inpbuf, sizeof(inpbuf), fp) != NULL) strcat(newparams, inpbuf); continue; } while ((c = getc(fp)) != EOF && c != '\n') ; /* else skipping comment */ continue; } ungetc(c, fp); /* else check object for receiver */ c = (*ocb)(fp); if (c < 0) return(c); rv += c; } /* close our input stream */ c = (*inspec == '!') ? pclose(fp) : fclose(fp); if (c != 0) { fprintf(stderr, "%s: error loading '%s'\n", progname, inspec); return(-1); } return(rv); } /* Get command arguments and run program */ int main(int argc, char *argv[]) { char fmtopt[6] = "-faa"; /* default output is ASCII */ char *xrs=NULL, *yrs=NULL, *ldopt=NULL; char *iropt = NULL; char *sendfn; char sampcntbuf[32], nsbinbuf[32]; FILE *rcfp; int nsbins; int a, i; /* screen rcontrib options */ progname = argv[0]; for (a = 1; a < argc-2; a++) { int na; /* check for argument expansion */ while ((na = expandarg(&argc, &argv, a)) > 0) ; if (na < 0) { fprintf(stderr, "%s: cannot expand '%s'\n", progname, argv[a]); return(1); } if (argv[a][0] != '-' || !argv[a][1]) break; na = 1; switch (argv[a][1]) { /* !! Keep consistent !! */ case 'v': /* verbose mode */ verbose = 1; na = 0; continue; case 'f': /* special case for -fo, -ff, etc. */ switch (argv[a][2]) { case '\0': /* cal file */ goto userr; case 'o': /* force output */ goto userr; case 'a': /* output format */ case 'f': case 'd': case 'c': if (!(fmtopt[3] = argv[a][3])) fmtopt[3] = argv[a][2]; fmtopt[2] = argv[a][2]; na = 0; continue; /* will pass later */ default: goto userr; } break; case 'x': /* x-resolution */ xrs = argv[++a]; na = 0; continue; case 'y': /* y-resolution */ yrs = argv[++a]; na = 0; continue; case 'c': /* number of samples */ sampcnt = atoi(argv[++a]); if (sampcnt <= 0) goto userr; na = 0; /* we re-add this later */ continue; case 'I': /* only for pass-through mode */ case 'i': iropt = argv[a]; na = 0; continue; case 'w': /* options without arguments */ if (!argv[a][2] || strchr("+1tTyY", argv[a][2]) == NULL) verbose = -1; break; case 'V': case 'u': case 'h': case 'r': break; case 'n': /* options with 1 argument */ case 's': case 'o': na = 2; break; case 'b': /* special case */ if (argv[a][2] != 'v') goto userr; break; case 'l': /* special case */ if (argv[a][2] == 'd') { ldopt = argv[a]; na = 0; continue; } na = 2; break; case 'd': /* special case */ if (argv[a][2] != 'v') na = 2; break; case 'a': /* special case */ if (argv[a][2] == 'p') { na = 2; /* photon map [+ bandwidth(s)] */ if (a < argc-3 && atoi(argv[a+1]) > 0) na += 1 + (a < argc-4 && atoi(argv[a+2]) > 0); } else na = (argv[a][2] == 'v') ? 4 : 2; break; case 'm': /* special case */ if (!argv[a][2]) goto userr; na = (argv[a][2] == 'e') | (argv[a][2] == 'a') ? 4 : 2; break; default: /* anything else is verbotten */ goto userr; } if (na <= 0) continue; CHECKARGC(na); /* pass on option */ rcarg[nrcargs++] = argv[a]; while (--na) /* + arguments if any */ rcarg[nrcargs++] = argv[++a]; } if (a > argc-2) goto userr; /* check at end of options */ sendfn = argv[a++]; /* assign sender & receiver inputs */ if (sendfn[0] == '-') { /* user wants pass-through mode? */ if (sendfn[1]) goto userr; sendfn = NULL; if (iropt) { CHECKARGC(1); rcarg[nrcargs++] = iropt; } if (xrs) { CHECKARGC(2); rcarg[nrcargs++] = "-x"; rcarg[nrcargs++] = xrs; } if (yrs) { CHECKARGC(2); rcarg[nrcargs++] = "-y"; rcarg[nrcargs++] = yrs; } if (ldopt) { CHECKARGC(1); rcarg[nrcargs++] = ldopt; } if (sampcnt <= 0) sampcnt = 1; } else { /* else in sampling mode */ if (iropt) { fputs(progname, stderr); fputs(": -i, -I supported for pass-through only\n", stderr); return(1); } #ifdef SMLFLT fmtopt[2] = 'f'; #else fmtopt[2] = 'd'; #endif if (sampcnt <= 0) sampcnt = 10000; } sprintf(sampcntbuf, "%d", sampcnt); CHECKARGC(3); /* add our format & sample count */ rcarg[nrcargs++] = fmtopt; rcarg[nrcargs++] = "-c"; rcarg[nrcargs++] = sampcntbuf; /* add receiver arguments to rcontrib */ if (load_scene(argv[a], add_recv_object) < 0) return(1); finish_receiver(); if (sendfn == NULL) { /* pass-through mode? */ CHECKARGC(1); /* add octree */ rcarg[nrcargs++] = oconv_command(argc-a, argv+a); rcarg[nrcargs] = NULL; return(my_exec(rcarg)); /* rcontrib does everything */ } clear_params(&curparams, 0); /* else load sender surface & params */ curmod[0] = '\0'; if (load_scene(sendfn, add_send_object) < 0) return(1); if ((nsbins = prepare_sampler()) <= 0) return(1); CHECKARGC(3); /* add row count and octree */ rcarg[nrcargs++] = "-y"; sprintf(nsbinbuf, "%d", nsbins); rcarg[nrcargs++] = nsbinbuf; rcarg[nrcargs++] = oconv_command(argc-a, argv+a); rcarg[nrcargs] = NULL; /* open pipe to rcontrib process */ if ((rcfp = popen_arglist(rcarg, "w")) == NULL) return(1); SET_FILE_BINARY(rcfp); #ifdef getc_unlocked flockfile(rcfp); #endif if (verbose > 0) { fprintf(stderr, "%s: sampling %d directions", progname, nsbins); if (curparams.nsurfs > 1) fprintf(stderr, " (%d elements)\n", curparams.nsurfs); else fputc('\n', stderr); } for (i = 0; i < nsbins; i++) /* send rcontrib ray samples */ if (!(*curparams.sample_basis)(&curparams, i, rcfp)) return(1); return(pclose(rcfp) < 0); /* all finished! */ userr: if (a < argc-2) fprintf(stderr, "%s: unsupported option '%s'", progname, argv[a]); fprintf(stderr, "Usage: %s [-v][rcontrib options] sender.rad receiver.rad [-i system.oct] [system.rad ..]\n", progname); return(1); }