#!/usr/bin/perl # Make a four-view picture of the photometry of a luminaire # # This is inspired by objpict.pl that renders four-view # images of objects that are not light sources. # # Written by Axel Jacobs use strict; use warnings; use File::Temp qw/ tempdir /; my $td = tempdir( CLEANUP => 1 ); my $res = 1024; # Default output image dimensions. Same as objpict. my $tiny = 0.01; my $maxsize = 0.001; # max luminaire size after scaling my $is_ies = 0; my $ies = "$td/dist.ies"; my $lumi = "$td/lumi.rad"; # Fitting given on cmd line, or generated by ies2rad my $lumi2 = "$td/lumi2.rad"; # Fitting scaled to size my $mat = "$td/lt.mat"; my $room1 = "$td/room1.rad"; my $room2 = "$td/room2.rad"; my $room3 = "$td/room3.rad"; my $room4 = "$td/room4.rad"; my $oct1 = "$td/lt1.oct"; my $oct2 = "$td/lt2.oct"; my $oct3 = "$td/lt3.oct"; my $oct4 = "$td/lt4.oct"; # Parse command line arguments while (@ARGV) { $_ = $ARGV[0]; if (m/-i/) { # File is an IES file, not a Radiance luminaire $is_ies = 1; } elsif (m/-d/) { # Resolution of the output HDR image $res = $ARGV[1]; shift @ARGV; } elsif (m/^-\w/) { # Oops! Illegal option die("ltpict: bad option '$_'\n"); } else { last; # No more options. What's left is the actual file name. } shift @ARGV; } # We need exactly one Radiance luminaires or IES file if ( !$#ARGV == 0 ) { die("ltpict: Need one Radiance luminaire or IES file.\n"); } elsif ( $is_ies == 0 ) { # Input file is a Radiance luminaire $lumi = $ARGV[0]; } else { # Input file is IES photometry system qq[ ies2rad -p $td -o lumi "$ARGV[0]" ]; } my $res2 = $res / 2; # Each rendering is half the size of final composite # Scale luminaire and center at origin my $dimstr = `getbbox -h "$lumi"`; chomp $dimstr; # Values returned by getbbox are indented and delimited with multiple spaces. $dimstr =~ s/^\s+//; # remove leading spaces my @dims = split( /\s+/, $dimstr ); # convert to array # Find largest axes-aligned dimension my @diffs = ( $dims[1] - $dims[0], $dims[3] - $dims[2], $dims[5] - $dims[4] ); @diffs = reverse sort { $a <=> $b } @diffs; my $size = $diffs[0]; # Move luminaire so centre is at origin, and scale my $xtrans = -1.0 * ( $dims[0] + $dims[1] ) / 2; my $ytrans = -1.0 * ( $dims[2] + $dims[3] ) / 2; my $ztrans = -1.0 * ( $dims[4] + $dims[5] ) / 2; my $scale = $maxsize / $size; system qq[ xform -t $xtrans $ytrans $ztrans "$lumi" > $lumi2 ]; # Material for the room open( FH, ">$mat" ) or die("ltpict: Cannot write to temporary file $mat"); print FH "void plastic wall_mat 0 0 5 .5 .5 .5 0 0"; close FH; # Different 'room' geometry for different views my $o = 0.1; # Offset # C0-C180 open( FH, ">$room1" ) or die("ltpict: Cannot write to temporary file $room1"); print FH "wall_mat polygon box.4620 0 0 12 -$o -5 5 -$o 5 5 -$o 5 -5 -$o -5 -5"; close(FH); # C90-C270 open( FH, ">$room2" ) or die("ltpict: Cannot write to temporary file $room2"); print FH "wall_mat polygon box.1540 0 0 12 5 $o -5 5 $o 5 -5 $o 5 -5 $o -5"; close(FH); # Lower hemisphere open( FH, ">$room3" ) or die("ltpict: Cannot write to temporary file $room3"); print FH "wall_mat bubble lower 0 0 4 0 0 $dims[4] 5"; close(FH); # Upper hemisphere open( FH, ">$room4" ) or die("ltpict: Cannot write to temporary file $room4"); print FH "wall_mat bubble upper 0 0 4 0 0 $dims[5] 5"; close(FH); # Call bbox again, for the translated and scaled luminaire. $dimstr = `getbbox -h $lumi2`; chomp $dimstr; # Values returned by getbbox are indented and delimited with multiple spaces. $dimstr =~ s/^\s+//; # remove leading spaces @dims = split( /\s+/, $dimstr ); # convert to array # Define the four views my $vw1 = "-vtl -vp 4.5 0 0 -vd -1 0 0 -vh 10 -vv 10"; my $vw2 = "-vtl -vp 0 -4.5 0 -vd 0 1 0 -vh 10 -vv 10"; my $zcent3 = $dims[4] - $tiny; my $vw3 = "-vta -vp 0 0 $zcent3 -vd 0 0 -1 -vu 0 1 0 -vh 180 -vv 180"; my $zcent4 = $dims[5] + $tiny; my $vw4 = "-vta -vp 0 0 $zcent4 -vd 0 0 1 -vu 0 1 0 -vh 180 -vv 180"; # Compile octrees system "oconv $mat $room1 $lumi2 > $oct1"; system "oconv $mat $room2 $lumi2 > $oct2"; system "oconv $mat $room3 $lumi2 > $oct3"; system "oconv $mat $room4 $lumi2 > $oct4"; # Render four different views of the objects my $rpict_cmd = "rpict -ab 0 -ds 0 -dv -av 0 0 0 -x $res2 -y $res2"; system "$rpict_cmd $vw1 $oct1 > $td/right.hdr"; system "$rpict_cmd $vw2 $oct2 > $td/front.hdr"; system "$rpict_cmd $vw3 $oct3 > $td/down.hdr"; system "$rpict_cmd $vw4 $oct4 > $td/up.hdr"; # Compose the four views into one image my $vtl = "$td/vtl.hdr"; # The two parallel views my $vta = "$td/vta.hdr"; # The two fisheye views # Auto-expose right/front and down/up pairs separately my $pcond_cmd = "pcond -l"; system "pcompos -a 2 $td/right.hdr $td/front.hdr > $td/rf.hdr"; system "$pcond_cmd $td/rf.hdr > $vtl"; system "pcompos -a 2 $td/down.hdr $td/up.hdr > $td/du.hdr"; system "$pcond_cmd $td/du.hdr > $vta"; # Combine top two images with bottom row. Output HDR. exec "pcompos -a 1 $vtl $vta"; #EOF