#!/usr/bin/perl -w # RCSid $Id: genBSDF.pl,v 2.38 2012/09/02 15:33:16 greg Exp $ # # Compute BSDF based on geometry and material description # # G. Ward # use strict; use File::Temp qw/ :mktemp /; sub userror { print STDERR "Usage: genBSDF [-n Nproc][-c Nsamp][-t{3|4} Nlog2][-r \"ropts\"][-dim xmin xmax ymin ymax zmin zmax][{+|-}f][{+|-}b][{+|-}mgf][{+|-}geom units] [input ..]\n"; exit 1; } my $td = mkdtemp("/tmp/genBSDF.XXXXXX"); chomp $td; my @savedARGV = @ARGV; my $tensortree = 0; my $ttlog2 = 4; my $nsamp = 2000; my $rtargs = "-w -ab 5 -ad 700 -lw 3e-6"; my $mgfin = 0; my $geout = 1; my $nproc = 1; my $doforw = 0; my $doback = 1; my $pctcull = 90; my $gunit = "Meter"; my @dim; # Get options while ($#ARGV >= 0) { if ("$ARGV[0]" =~ /^[-+]m/) { $mgfin = ("$ARGV[0]" =~ /^\+/); } elsif ("$ARGV[0]" eq "-r") { $rtargs = "$rtargs $ARGV[1]"; shift @ARGV; } elsif ("$ARGV[0]" =~ /^[-+]g/) { $geout = ("$ARGV[0]" =~ /^\+/); $gunit = $ARGV[1]; if ($gunit !~ /^(?i)(meter|foot|inch|centimeter|millimeter)$/) { die "Illegal geometry unit '$gunit': must be meter, foot, inch, centimeter, or millimeter\n"; } shift @ARGV; } elsif ("$ARGV[0]" =~ /^[-+]f/) { $doforw = ("$ARGV[0]" =~ /^\+/); } elsif ("$ARGV[0]" =~ /^[-+]b/) { $doback = ("$ARGV[0]" =~ /^\+/); } elsif ("$ARGV[0]" eq "-t") { # Use value < 0 for rttree_reduce bypass $pctcull = $ARGV[1]; shift @ARGV; } elsif ("$ARGV[0]" =~ /^-t[34]$/) { $tensortree = substr($ARGV[0], 2, 1); $ttlog2 = $ARGV[1]; shift @ARGV; } elsif ("$ARGV[0]" eq "-c") { $nsamp = $ARGV[1]; shift @ARGV; } elsif ("$ARGV[0]" eq "-n") { $nproc = $ARGV[1]; shift @ARGV; } elsif ("$ARGV[0]" =~ /^-d/) { userror() if ($#ARGV < 6); @dim = @ARGV[1..6]; shift @ARGV for (1..6); } elsif ("$ARGV[0]" =~ /^[-+]./) { userror(); } else { last; } shift @ARGV; } # Check that we're actually being asked to do something die "Must have at least one of +forward or +backward\n" if (!$doforw && !$doback); # Get scene description and dimensions my $radscn = "$td/device.rad"; my $mgfscn = "$td/device.mgf"; my $octree = "$td/device.oct"; if ( $mgfin ) { system "mgfilt '#,o,xf,c,cxy,cspec,cmix,m,sides,rd,td,rs,ts,ir,v,p,n,f,fh,sph,cyl,cone,prism,ring,torus' @ARGV > $mgfscn"; die "Could not load MGF input\n" if ( $? ); system "mgf2rad $mgfscn > $radscn"; } else { system "xform -e @ARGV > $radscn"; die "Could not load Radiance input\n" if ( $? ); system "rad2mgf $radscn > $mgfscn" if ( $geout ); } if ($#dim != 5) { @dim = split ' ', `getbbox -h $radscn`; } print STDERR "Warning: Device extends into room\n" if ($dim[5] > 1e-5); # Add receiver surfaces (rectangular) my $fmodnm="receiver_face"; my $bmodnm="receiver_behind"; open(RADSCN, ">> $radscn"); print RADSCN "void glow $fmodnm\n0\n0\n4 1 1 1 0\n\n"; print RADSCN "$fmodnm source f_receiver\n0\n0\n4 0 0 1 180\n"; print RADSCN "void glow $bmodnm\n0\n0\n4 1 1 1 0\n\n"; print RADSCN "$bmodnm source b_receiver\n0\n0\n4 0 0 -1 180\n"; close RADSCN; # Generate octree system "oconv -w $radscn > $octree"; die "Could not compile scene\n" if ( $? ); # Output XML prologue print ' '; print "\n"; print 'System Name Manufacturer '; printf "\t\t%.3f\n", $dim[5] - $dim[4]; printf "\t\t%.3f\n", $dim[1] - $dim[0]; printf "\t\t%.3f\n", $dim[3] - $dim[2]; print "\t\tIntegral\n"; # Output MGF description if requested if ( $geout ) { print "\t\t\n"; printf "xf -t %.6f %.6f 0\n", -($dim[0]+$dim[1])/2, -($dim[2]+$dim[3])/2; open(MGFSCN, "< $mgfscn"); while () { print $_; } close MGFSCN; print "xf\n"; print "\t\t\n"; } print " \n"; # Set up surface sampling my $nx = int(sqrt($nsamp*($dim[1]-$dim[0])/($dim[3]-$dim[2])) + .5); my $ny = int($nsamp/$nx + .5); $nsamp = $nx * $ny; my $ns = 2**$ttlog2; my (@pdiv, $disk2sq, $sq2disk, $tcal, $kcal); # Create data segments (all the work happens here) if ( $tensortree ) { do_tree_bsdf(); } else { do_matrix_bsdf(); } # Output XML epilogue print ' '; # Clean up temporary files and exit exec("rm -rf $td"); #-------------- End of main program segment --------------# #++++++++++++++ Tensor tree BSDF generation ++++++++++++++# sub do_tree_bsdf { # Shirley-Chiu mapping from unit square to disk $sq2disk = ' in_square_a = 2*in_square_x - 1; in_square_b = 2*in_square_y - 1; in_square_rgn = if(in_square_a + in_square_b, if(in_square_a - in_square_b, 1, 2), if(in_square_b - in_square_a, 3, 4)); out_disk_r = .999995*select(in_square_rgn, in_square_a, in_square_b, -in_square_a, -in_square_b); out_disk_phi = PI/4 * select(in_square_rgn, in_square_b/in_square_a, 2 - in_square_a/in_square_b, 4 + in_square_b/in_square_a, if(in_square_b*in_square_b, 6 - in_square_a/in_square_b, 0)); Dx = out_disk_r*cos(out_disk_phi); Dy = out_disk_r*sin(out_disk_phi); Dz = sqrt(1 - out_disk_r*out_disk_r); '; # Shirley-Chiu mapping from unit disk to square $disk2sq = ' norm_radians(p) : if(-p - PI/4, p + 2*PI, p); in_disk_r = .999995*sqrt(Dx*Dx + Dy*Dy); in_disk_phi = norm_radians(atan2(Dy, Dx)); in_disk_rgn = floor((in_disk_phi + PI/4)/(PI/2)) + 1; out_square_a = select(in_disk_rgn, in_disk_r, (PI/2 - in_disk_phi)*in_disk_r/(PI/4), -in_disk_r, (in_disk_phi - 3*PI/2)*in_disk_r/(PI/4)); out_square_b = select(in_disk_rgn, in_disk_phi*in_disk_r/(PI/4), in_disk_r, (PI - in_disk_phi)*in_disk_r/(PI/4), -in_disk_r); out_square_x = (out_square_a + 1)/2; out_square_y = (out_square_b + 1)/2; '; # Announce ourselves in XML output print "\t\n"; print "\t\tTensorTree$tensortree\n"; print "\t\n"; # Start rcontrib processes for compute each side do_tree_rtcontrib(0) if ( $doback ); do_tree_rtcontrib(1) if ( $doforw ); } # end of sub do_tree_bsdf() # Run rcontrib process to generate tensor tree samples sub do_tree_rtcontrib { my $forw = shift; my $matargs = "-m $bmodnm"; if ( !$forw || !$doback || $tensortree==3 ) { $matargs .= " -m $fmodnm"; } my $cmd = "rcontrib $rtargs -h -ff -fo -n $nproc -c $nsamp " . "-e '$disk2sq' -bn '$ns*$ns' " . "-b '$ns*floor(out_square_x*$ns)+floor(out_square_y*$ns)' " . "-o $td/%s.flt $matargs $octree"; if ( $tensortree == 3 ) { # Isotropic BSDF my $ns2 = $ns / 2; $cmd = "cnt $ns2 $ny $nx " . "| rcalc -e 'r1=rand(.8681*recno-.673892)' " . "-e 'r2=rand(-5.37138*recno+67.1737811)' " . "-e 'r3=rand(+3.17603772*recno+83.766771)' " . "-e 'Dx=1-2*(\$1+r1)/$ns;Dy:0;Dz=sqrt(1-Dx*Dx)' " . "-e 'xp=(\$3+r2)*(($dim[1]-$dim[0])/$nx)+$dim[0]' " . "-e 'yp=(\$2+r3)*(($dim[3]-$dim[2])/$ny)+$dim[2]' " . "-e 'zp=$dim[5-$forw]' -e 'myDz=Dz*($forw*2-1)' " . "-e '\$1=xp-Dx;\$2=yp-Dy;\$3=zp-myDz' " . "-e '\$4=Dx;\$5=Dy;\$6=myDz' -of " . "| $cmd"; } else { # Anisotropic BSDF # Sample area vertically to improve load balance, since # shading systems usually have bilateral symmetry (L-R) $cmd = "cnt $ns $ns $ny $nx " . "| rcalc -e 'r1=rand(.8681*recno-.673892)' " . "-e 'r2=rand(-5.37138*recno+67.1737811)' " . "-e 'r3=rand(3.17603772*recno+83.766771)' " . "-e 'r4=rand(-2.3857833*recno-964.72738)' " . "-e 'in_square_x=(\$1+r1)/$ns' " . "-e 'in_square_y=(\$2+r2)/$ns' -e '$sq2disk' " . "-e 'xp=(\$4+r3)*(($dim[1]-$dim[0])/$nx)+$dim[0]' " . "-e 'yp=(\$3+r4)*(($dim[3]-$dim[2])/$ny)+$dim[2]' " . "-e 'zp=$dim[5-$forw]' -e 'myDz=Dz*($forw*2-1)' " . "-e '\$1=xp-Dx;\$2=yp-Dy;\$3=zp-myDz' " . "-e '\$4=Dx;\$5=Dy;\$6=myDz' -of " . "| $cmd"; } # print STDERR "Starting: $cmd\n"; system "$cmd" || die "Failure running rcontrib"; ttree_out($forw); } # end of do_tree_rtcontrib() # Simplify and output tensor tree results sub ttree_out { my $forw = shift; my $side = ("Back","Front")[$forw]; my $cmd; # Only output one transmitted anisotropic distribution, preferring backwards if ( !$forw || !$doback || $tensortree==3 ) { print ' System Visible CIE Illuminant D65 1nm.ssp ASTM E308 1931 Y.dsp '; print "\t\t\tTransmission $side\n"; print ' LBNL/Shirley-Chiu BTDF '; $cmd = "rcalc -if3 -e 'Omega:PI/($ns*$ns)' " . q{-e '$1=(0.265*$1+0.670*$2+0.065*$3)/Omega' }; if ($pctcull >= 0) { $cmd .= "-of $td/" . ($bmodnm,$fmodnm)[$forw] . ".flt " . "| rttree_reduce -a -h -ff -t $pctcull -r $tensortree -g $ttlog2"; system "$cmd" || die "Failure running rttree_reduce"; } else { $cmd .= "$td/" . ($bmodnm,$fmodnm)[$forw] . ".flt"; print "{\n"; system "$cmd" || die "Failure running rcalc"; for (my $i = ($tensortree==3)*$ns*$ns*$ns/2; $i-- > 0; ) { print "0\n"; } print "}\n"; } print ' '; } # Output reflection print ' System Visible CIE Illuminant D65 1nm.ssp ASTM E308 1931 Y.dsp '; print "\t\t\tReflection $side\n"; print ' LBNL/Shirley-Chiu BRDF '; $cmd = "rcalc -if3 -e 'Omega:PI/($ns*$ns)' " . q{-e '$1=(0.265*$1+0.670*$2+0.065*$3)/Omega' }; if ($pctcull >= 0) { $cmd .= "-of $td/" . ($fmodnm,$bmodnm)[$forw] . ".flt " . "| rttree_reduce -a -h -ff -t $pctcull -r $tensortree -g $ttlog2"; system "$cmd" || die "Failure running rttree_reduce"; } else { $cmd .= "$td/" . ($fmodnm,$bmodnm)[$forw] . ".flt"; print "{\n"; system "$cmd" || die "Failure running rcalc"; for (my $i = ($tensortree==3)*$ns*$ns*$ns/2; $i-- > 0; ) { print "0\n"; } print "}\n"; } print ' '; } # end of ttree_out() #------------- End of do_tree_bsdf() & subroutines -------------# #+++++++++++++++ Klems matrix BSDF generation +++++++++++++++# sub do_matrix_bsdf { # Set up sampling of portal # Kbin to produce incident direction in full Klems basis with (x1,x2) randoms $tcal = ' DEGREE : PI/180; sq(x) : x*x; Kpola(r) : select(r+1, 0, 5, 15, 25, 35, 45, 55, 65, 75, 90); Knaz(r) : select(r, 1, 8, 16, 20, 24, 24, 24, 16, 12); Kaccum(r) : if(r-.5, Knaz(r) + Kaccum(r-1), 0); Kmax : Kaccum(Knaz(0)); Kfindrow(r, rem) : if(rem-Knaz(r)+.5, Kfindrow(r+1, rem-Knaz(r)), r); Krow = if(Kbin-(Kmax-.5), 0, Kfindrow(1, Kbin)); Kcol = Kbin - Kaccum(Krow-1); Kazi = 360*DEGREE * (Kcol + (.5 - x2)) / Knaz(Krow); Kpol = DEGREE * (x1*Kpola(Krow) + (1-x1)*Kpola(Krow-1)); sin_kpol = sin(Kpol); Dx = cos(Kazi)*sin_kpol; Dy = sin(Kazi)*sin_kpol; Dz = sqrt(1 - sin_kpol*sin_kpol); KprojOmega = PI * if(Kbin-.5, (sq(cos(Kpola(Krow-1)*DEGREE)) - sq(cos(Kpola(Krow)*DEGREE)))/Knaz(Krow), 1 - sq(cos(Kpola(1)*DEGREE))); '; # Compute Klems bin from exiting ray direction (forward or backward) $kcal = ' DEGREE : PI/180; abs(x) : if(x, x, -x); Acos(x) : if(x-1, 0, if(-1-x, PI, acos(x))) / DEGREE; posangle(a) : if(-a, a + 2*PI, a); Atan2(y,x) : posangle(atan2(y,x)) / DEGREE; kpola(r) : select(r, 5, 15, 25, 35, 45, 55, 65, 75, 90); knaz(r) : select(r, 1, 8, 16, 20, 24, 24, 24, 16, 12); kaccum(r) : if(r-.5, knaz(r) + kaccum(r-1), 0); kfindrow(r, pol) : if(r-kpola(0)+.5, r, if(pol-kpola(r), kfindrow(r+1, pol), r) ); kazn(azi,inc) : if((360-.5*inc)-azi, floor((azi+.5*inc)/inc), 0); kbin2(pol,azi) = select(kfindrow(1, pol), kazn(azi,360/knaz(1)), kaccum(1) + kazn(azi,360/knaz(2)), kaccum(2) + kazn(azi,360/knaz(3)), kaccum(3) + kazn(azi,360/knaz(4)), kaccum(4) + kazn(azi,360/knaz(5)), kaccum(5) + kazn(azi,360/knaz(6)), kaccum(6) + kazn(azi,360/knaz(7)), kaccum(7) + kazn(azi,360/knaz(8)), kaccum(8) + kazn(azi,360/knaz(9)) ); kbin = kbin2(Acos(abs(Dz)),Atan2(Dy,Dx)); '; my $ndiv = 145; # Compute scattering data using rcontrib my @tfarr; my @rfarr; my @tbarr; my @rbarr; my $cmd; my $rtcmd = "rcontrib $rtargs -h -ff -fo -n $nproc -c $nsamp " . "-e '$kcal' -b kbin -bn $ndiv " . "-o '$td/%s.flt' -m $fmodnm -m $bmodnm $octree"; my $rccmd = "rcalc -e '$tcal' " . "-e 'mod(n,d):n-floor(n/d)*d' -e 'Kbin=mod(recno-.999,$ndiv)' " . q{-if3 -e '$1=(0.265*$1+0.670*$2+0.065*$3)/KprojOmega' }; if ( $doforw ) { $cmd = "cnt $ndiv $ny $nx | rcalc -of -e '$tcal' " . "-e 'xp=(\$3+rand(.12*recno+288))*(($dim[1]-$dim[0])/$nx)+$dim[0]' " . "-e 'yp=(\$2+rand(.37*recno-44))*(($dim[3]-$dim[2])/$ny)+$dim[2]' " . "-e 'zp:$dim[4]' " . q{-e 'Kbin=$1;x1=rand(2.75*recno+3.1);x2=rand(-2.01*recno-3.37)' } . q{-e '$1=xp-Dx;$2=yp-Dy;$3=zp-Dz;$4=Dx;$5=Dy;$6=Dz' } . "| $rtcmd"; system "$cmd" || die "Failure running: $cmd\n"; @tfarr = `$rccmd $td/$fmodnm.flt`; die "Failure running: $rccmd $td/$fmodnm.flt\n" if ( $? ); @rfarr = `$rccmd $td/$bmodnm.flt`; die "Failure running: $rccmd $td/$bmodnm.flt\n" if ( $? ); } if ( $doback ) { $cmd = "cnt $ndiv $ny $nx | rcalc -of -e '$tcal' " . "-e 'xp=(\$3+rand(.35*recno-15))*(($dim[1]-$dim[0])/$nx)+$dim[0]' " . "-e 'yp=(\$2+rand(.86*recno+11))*(($dim[3]-$dim[2])/$ny)+$dim[2]' " . "-e 'zp:$dim[5]' " . q{-e 'Kbin=$1;x1=rand(1.21*recno+2.75);x2=rand(-3.55*recno-7.57)' } . q{-e '$1=xp-Dx;$2=yp-Dy;$3=zp+Dz;$4=Dx;$5=Dy;$6=-Dz' } . "| $rtcmd"; system "$cmd" || die "Failure running: $cmd\n"; @tbarr = `$rccmd $td/$bmodnm.flt`; die "Failure running: $rccmd $td/$bmodnm.flt\n" if ( $? ); chomp(@tbarr); @rbarr = `$rccmd $td/$fmodnm.flt`; die "Failure running: $rccmd $td/$fmodnm.flt\n" if ( $? ); chomp(@rbarr); } # Output angle basis print ' Columns LBNL/Klems Full 0 1 0 5 10 8 5 15 20 16 15 25 30 20 25 35 40 24 35 45 50 24 45 55 60 24 55 65 70 16 65 75 82.5 12 75 90 '; if ( $doforw ) { print ' System Visible CIE Illuminant D65 1nm.ssp ASTM E308 1931 Y.dsp Transmission Front LBNL/Klems Full LBNL/Klems Full BTDF '; # Output front transmission (transposed order) for (my $od = 0; $od < $ndiv; $od++) { for (my $id = 0; $id < $ndiv; $id++) { print $tfarr[$ndiv*$id + $od], ",\n"; } print "\n"; } print ' System Visible CIE Illuminant D65 1nm.ssp ASTM E308 1931 Y.dsp Reflection Front LBNL/Klems Full LBNL/Klems Full BRDF '; # Output front reflection (transposed order) for (my $od = 0; $od < $ndiv; $od++) { for (my $id = 0; $id < $ndiv; $id++) { print $rfarr[$ndiv*$id + $od], ",\n"; } print "\n"; } print ' '; } if ( $doback ) { print ' System Visible CIE Illuminant D65 1nm.ssp ASTM E308 1931 Y.dsp Transmission Back LBNL/Klems Full LBNL/Klems Full BTDF '; # Output back transmission (transposed order) for (my $od = 0; $od < $ndiv; $od++) { for (my $id = 0; $id < $ndiv; $id++) { print $tbarr[$ndiv*$id + $od], ",\n"; } print "\n"; } print ' System Visible CIE Illuminant D65 1nm.ssp ASTM E308 1931 Y.dsp Reflection Back LBNL/Klems Full LBNL/Klems Full BRDF '; # Output back reflection (transposed order) for (my $od = 0; $od < $ndiv; $od++) { for (my $id = 0; $id < $ndiv; $id++) { print $rbarr[$ndiv*$id + $od], ",\n"; } print "\n"; } print ' '; } } #------------- End of do_matrix_bsdf() --------------#