| 1 |
greg |
2.1 |
{ RCSid $Id$ }
|
| 2 |
|
|
{
|
| 3 |
|
|
Compute patterns for ambient position markers
|
| 4 |
|
|
}
|
| 5 |
|
|
{ Relative hit point }
|
| 6 |
|
|
rpx = Px - arg(1);
|
| 7 |
|
|
rpy = Py - arg(2);
|
| 8 |
|
|
rpz = Pz - arg(3);
|
| 9 |
|
|
|
| 10 |
|
|
{ Calculation of directional gradient pattern }
|
| 11 |
|
|
ndx = arg(4); ndy = arg(5); ndz = arg(6);
|
| 12 |
|
|
dgx = arg(7); dgy = arg(8); dgz = arg(9);
|
| 13 |
|
|
dg = sqrt(dgx*dgx + dgy*dgy + dgz*dgz);
|
| 14 |
|
|
dux = (ndy*dgz - ndz*dgy)/dg;
|
| 15 |
|
|
duy = (ndz*dgx - ndx*dgz)/dg;
|
| 16 |
|
|
duz = (ndx*dgy - ndy*dgx)/dg;
|
| 17 |
|
|
dsine = (dux*rpx + duy*rpy + duz*rpz)/sqrt(rpx*rpx + rpy*rpy + rpz*rpz);
|
| 18 |
|
|
dirfunc = bound(0, 1 + dg*dsine, 2);
|
| 19 |
|
|
|
| 20 |
|
|
{ Calculation of positional gradient pattern }
|
| 21 |
|
|
pgx = arg(4); pgy = arg(5); pgz = arg(6);
|
| 22 |
|
|
posfunc = bound(0, 1 + (pgx*rpx + pgy*rpy + pgz*rpz), 2);
|
| 23 |
|
|
|
| 24 |
|
|
{ Calculation of ellipse stencil for base }
|
| 25 |
|
|
usx = arg(4); usy = arg(5); usz = arg(6);
|
| 26 |
|
|
vsx = arg(7); vsy = arg(8); vsz = arg(9);
|
| 27 |
|
|
ellipstencil = if(1 - sq(usx*rpx + usy*rpy + usz*rpz) - sq(vsx*rpx + vsy*rpy + vsz*rpz),
|
| 28 |
|
|
1, 0);
|