ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/virtuals.c
Revision: 1.30
Committed: Wed Oct 23 08:49:40 1991 UTC (32 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.29: +1 -1 lines
Log Message:
minor bug fix

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines for simulating virtual light sources
9 * Thus far, we only support planar mirrors.
10 */
11
12 #include "ray.h"
13
14 #include "octree.h"
15
16 #include "otypes.h"
17
18 #include "source.h"
19
20 #include "random.h"
21
22 #define MINSAMPLES 16 /* minimum number of pretest samples */
23 #define STESTMAX 32 /* maximum seeks per sample */
24
25
26 double getdisk();
27
28 static OBJECT *vobject; /* virtual source objects */
29 static int nvobjects = 0; /* number of virtual source objects */
30
31
32 markvirtuals() /* find and mark virtual sources */
33 {
34 register OBJREC *o;
35 register int i;
36 /* check number of direct relays */
37 if (directrelay <= 0)
38 return;
39 /* find virtual source objects */
40 for (i = 0; i < nobjects; i++) {
41 o = objptr(i);
42 if (!issurface(o->otype) || o->omod == OVOID)
43 continue;
44 if (!isvlight(objptr(o->omod)->otype))
45 continue;
46 if (sfun[o->otype].of == NULL ||
47 sfun[o->otype].of->getpleq == NULL) {
48 objerror(o,WARNING,"secondary sources not supported");
49 continue;
50 }
51 if (nvobjects == 0)
52 vobject = (OBJECT *)malloc(sizeof(OBJECT));
53 else
54 vobject = (OBJECT *)realloc((char *)vobject,
55 (unsigned)(nvobjects+1)*sizeof(OBJECT));
56 if (vobject == NULL)
57 error(SYSTEM, "out of memory in addvirtuals");
58 vobject[nvobjects++] = i;
59 }
60 if (nvobjects == 0)
61 return;
62 #ifdef DEBUG
63 fprintf(stderr, "found %d virtual source objects\n", nvobjects);
64 #endif
65 /* append virtual sources */
66 for (i = nsources; i-- > 0; )
67 addvirtuals(i, directrelay);
68 /* done with our object list */
69 free((char *)vobject);
70 nvobjects = 0;
71 }
72
73
74 addvirtuals(sn, nr) /* add virtuals associated with source */
75 int sn;
76 int nr;
77 {
78 register int i;
79 /* check relay limit first */
80 if (nr <= 0)
81 return;
82 if (source[sn].sflags & SSKIP)
83 return;
84 /* check each virtual object for projection */
85 for (i = 0; i < nvobjects; i++)
86 /* vproject() calls us recursively */
87 vproject(objptr(vobject[i]), sn, nr-1);
88 }
89
90
91 vproject(o, sn, n) /* create projected source(s) if they exist */
92 OBJREC *o;
93 int sn;
94 int n;
95 {
96 register int i;
97 register VSMATERIAL *vsmat;
98 MAT4 proj;
99 int ns;
100
101 if (o == source[sn].so) /* objects cannot project themselves */
102 return;
103 /* get virtual source material */
104 vsmat = sfun[objptr(o->omod)->otype].mf;
105 /* project virtual sources */
106 for (i = 0; i < vsmat->nproj; i++)
107 if ((*vsmat->vproj)(proj, o, &source[sn], i))
108 if ((ns = makevsrc(o, sn, proj)) >= 0) {
109 source[ns].sa.sv.pn = i;
110 #ifdef DEBUG
111 virtverb(ns, stderr);
112 #endif
113 addvirtuals(ns, n);
114 }
115 }
116
117
118 int
119 makevsrc(op, sn, pm) /* make virtual source if reasonable */
120 OBJREC *op;
121 register int sn;
122 MAT4 pm;
123 {
124 FVECT nsloc, nsnorm, ocent, v;
125 double maxrad2, d;
126 int nsflags;
127 SPOT theirspot, ourspot;
128 register int i;
129
130 nsflags = source[sn].sflags | (SVIRTUAL|SSPOT|SFOLLOW);
131 /* get object center and max. radius */
132 maxrad2 = getdisk(ocent, op, sn);
133 if (maxrad2 <= FTINY) /* too small? */
134 return(-1);
135 /* get location and spot */
136 if (source[sn].sflags & SDISTANT) { /* distant source */
137 if (source[sn].sflags & SPROX)
138 return(-1); /* should never get here! */
139 multv3(nsloc, source[sn].sloc, pm);
140 normalize(nsloc);
141 VCOPY(ourspot.aim, ocent);
142 ourspot.siz = PI*maxrad2;
143 ourspot.flen = 0.;
144 if (source[sn].sflags & SSPOT) {
145 multp3(theirspot.aim, source[sn].sl.s->aim, pm);
146 /* adjust for source size */
147 d = sqrt(dist2(ourspot.aim, theirspot.aim));
148 d = sqrt(source[sn].sl.s->siz/PI) + d*source[sn].srad;
149 theirspot.siz = PI*d*d;
150 ourspot.flen = theirspot.flen = source[sn].sl.s->flen;
151 d = ourspot.siz;
152 if (!commonbeam(&ourspot, &theirspot, nsloc))
153 return(-1); /* no overlap */
154 if (ourspot.siz < d-FTINY) { /* it shrunk */
155 d = beamdisk(v, op, &ourspot, nsloc);
156 if (d <= FTINY)
157 return(-1);
158 if (d < maxrad2) {
159 maxrad2 = d;
160 VCOPY(ocent, v);
161 }
162 }
163 }
164 } else { /* local source */
165 multp3(nsloc, source[sn].sloc, pm);
166 for (i = 0; i < 3; i++)
167 ourspot.aim[i] = ocent[i] - nsloc[i];
168 if ((d = normalize(ourspot.aim)) == 0.)
169 return(-1); /* at source!! */
170 if (source[sn].sflags & SPROX && d > source[sn].sl.prox)
171 return(-1); /* too far away */
172 ourspot.flen = 0.;
173 /* adjust for source size */
174 d = (sqrt(maxrad2) + source[sn].srad) / d;
175 if (d < 1.-FTINY)
176 ourspot.siz = 2.*PI*(1. - sqrt(1.-d*d));
177 else
178 nsflags &= ~SSPOT;
179 if (source[sn].sflags & SSPOT) {
180 copystruct(&theirspot, source[sn].sl.s);
181 multv3(theirspot.aim, source[sn].sl.s->aim, pm);
182 normalize(theirspot.aim);
183 if (nsflags & SSPOT) {
184 ourspot.flen = theirspot.flen;
185 d = ourspot.siz;
186 if (!commonspot(&ourspot, &theirspot, nsloc))
187 return(-1); /* no overlap */
188 } else {
189 nsflags |= SSPOT;
190 copystruct(&ourspot, &theirspot);
191 d = 2.*ourspot.siz;
192 }
193 if (ourspot.siz < d-FTINY) { /* it shrunk */
194 d = spotdisk(v, op, &ourspot, nsloc);
195 if (d <= FTINY)
196 return(-1);
197 if (d < maxrad2) {
198 maxrad2 = d;
199 VCOPY(ocent, v);
200 }
201 }
202 }
203 if (source[sn].sflags & SFLAT) { /* behind source? */
204 multv3(nsnorm, source[sn].snorm, pm);
205 normalize(nsnorm);
206 if (nsflags & SSPOT && !checkspot(&ourspot, nsnorm))
207 return(-1);
208 }
209 }
210 /* pretest visibility */
211 nsflags = vstestvis(nsflags, op, ocent, maxrad2, sn);
212 if (nsflags & SSKIP)
213 return(-1); /* obstructed */
214 /* it all checks out, so make it */
215 if ((i = newsource()) < 0)
216 goto memerr;
217 source[i].sflags = nsflags;
218 VCOPY(source[i].sloc, nsloc);
219 multv3(source[i].ss[SU], source[sn].ss[SU], pm);
220 multv3(source[i].ss[SV], source[sn].ss[SV], pm);
221 if (nsflags & SFLAT)
222 VCOPY(source[i].snorm, nsnorm);
223 else
224 multv3(source[i].ss[SW], source[sn].ss[SW], pm);
225 source[i].srad = source[sn].srad;
226 source[i].ss2 = source[sn].ss2;
227 if (nsflags & SSPOT) {
228 if ((source[i].sl.s = (SPOT *)malloc(sizeof(SPOT))) == NULL)
229 goto memerr;
230 copystruct(source[i].sl.s, &ourspot);
231 }
232 if (nsflags & SPROX)
233 source[i].sl.prox = source[sn].sl.prox;
234 source[i].sa.sv.sn = sn;
235 source[i].so = op;
236 return(i);
237 memerr:
238 error(SYSTEM, "out of memory in makevsrc");
239 }
240
241
242 double
243 getdisk(oc, op, sn) /* get visible object disk */
244 FVECT oc;
245 OBJREC *op;
246 register int sn;
247 {
248 double rad2, roffs, offs, d, rd, rdoto;
249 FVECT rnrm, nrm;
250 /* first, use object getdisk function */
251 rad2 = getmaxdisk(oc, op);
252 if (!(source[sn].sflags & SVIRTUAL))
253 return(rad2); /* all done for normal source */
254 /* check for correct side of relay surface */
255 roffs = getplaneq(rnrm, source[sn].so);
256 rd = DOT(rnrm, source[sn].sloc); /* source projection */
257 if (!(source[sn].sflags & SDISTANT))
258 rd -= roffs;
259 d = DOT(rnrm, oc) - roffs; /* disk distance to relay plane */
260 if ((d > 0.) ^ (rd > 0.))
261 return(rad2); /* OK if opposite sides */
262 if (d*d >= rad2)
263 return(0.); /* no relay is possible */
264 /* we need a closer look */
265 offs = getplaneq(nrm, op);
266 rdoto = DOT(rnrm, nrm);
267 if (d*d >= rad2*(1.-rdoto*rdoto))
268 return(0.); /* disk entirely on projection side */
269 /* should shrink disk but I'm lazy */
270 return(rad2);
271 }
272
273
274 int
275 vstestvis(f, o, oc, or2, sn) /* pretest source visibility */
276 int f; /* virtual source flags */
277 OBJREC *o; /* relay object */
278 FVECT oc; /* relay object center */
279 double or2; /* relay object radius squared */
280 register int sn; /* target source number */
281 {
282 RAY sr;
283 FVECT onorm;
284 FVECT offsdir;
285 SRCINDEX si;
286 double or, d;
287 int infront;
288 int stestlim, ssn;
289 int nhit, nok;
290 register int i, n;
291 /* return if pretesting disabled */
292 if (vspretest <= 0)
293 return(f);
294 /* get surface normal */
295 getplaneq(onorm, o);
296 /* set number of rays to sample */
297 if (source[sn].sflags & SDISTANT) {
298 /* 32. == heuristic constant */
299 n = 32.*or2/(thescene.cusize*thescene.cusize)*vspretest + .5;
300 infront = DOT(onorm, source[sn].sloc) > 0.;
301 } else {
302 for (i = 0; i < 3; i++)
303 offsdir[i] = source[sn].sloc[i] - oc[i];
304 d = DOT(offsdir,offsdir);
305 if (d <= FTINY)
306 n = 2.*PI * vspretest + .5;
307 else
308 n = 2.*PI * (1.-sqrt(1./(1.+or2/d)))*vspretest + .5;
309 infront = DOT(onorm, offsdir) > 0.;
310 }
311 if (n < MINSAMPLES) n = MINSAMPLES;
312 #ifdef DEBUG
313 fprintf(stderr, "pretesting source %d in object %s with %d rays\n",
314 sn, o->oname, n);
315 #endif
316 /* sample */
317 or = sqrt(or2);
318 stestlim = n*STESTMAX;
319 ssn = 0;
320 nhit = nok = 0;
321 while (n-- > 0) {
322 /* get sample point */
323 do {
324 if (ssn >= stestlim) {
325 #ifdef DEBUG
326 fprintf(stderr, "\ttoo hard to hit\n");
327 #endif
328 return(f); /* too small a target! */
329 }
330 multisamp(offsdir, 3, urand(sn*931+5827+ssn));
331 for (i = 0; i < 3; i++)
332 offsdir[i] = or*(1. - 2.*offsdir[i]);
333 ssn++;
334 for (i = 0; i < 3; i++)
335 sr.rorg[i] = oc[i] + offsdir[i];
336 d = DOT(offsdir,onorm);
337 if (infront)
338 for (i = 0; i < 3; i++) {
339 sr.rorg[i] -= (d-.0001)*onorm[i];
340 sr.rdir[i] = -onorm[i];
341 }
342 else
343 for (i = 0; i < 3; i++) {
344 sr.rorg[i] -= (d+.0001)*onorm[i];
345 sr.rdir[i] = onorm[i];
346 }
347 rayorigin(&sr, NULL, PRIMARY, 1.0);
348 } while (!(*ofun[o->otype].funp)(o, &sr));
349 /* check against source */
350 initsrcindex(&si);
351 si.sn = sn;
352 nopart(&si, &sr);
353 samplendx++;
354 if (!srcray(&sr, NULL, &si) || sr.rsrc != sn)
355 continue;
356 sr.revf = srcvalue;
357 rayvalue(&sr);
358 if (bright(sr.rcol) <= FTINY)
359 continue;
360 nok++;
361 /* check against obstructions */
362 rayclear(&sr);
363 sr.revf = raytrace;
364 rayvalue(&sr);
365 if (bright(sr.rcol) > FTINY)
366 nhit++;
367 if (nhit > 0 && nhit < nok) {
368 #ifdef DEBUG
369 fprintf(stderr, "\tpartially occluded\n");
370 #endif
371 return(f); /* need to shadow test */
372 }
373 }
374 if (nhit == 0) {
375 #ifdef DEBUG
376 fprintf(stderr, "\t0%% hit rate\n");
377 #endif
378 return(f | SSKIP); /* 0% hit rate: totally occluded */
379 }
380 #ifdef DEBUG
381 fprintf(stderr, "\t100%% hit rate\n");
382 #endif
383 return(f & ~SFOLLOW); /* 100% hit rate: no occlusion */
384 }
385
386
387 #ifdef DEBUG
388 virtverb(sn, fp) /* print verbose description of virtual source */
389 register int sn;
390 FILE *fp;
391 {
392 register int i;
393
394 fprintf(fp, "%s virtual source %d in %s %s\n",
395 source[sn].sflags & SDISTANT ? "distant" : "local",
396 sn, ofun[source[sn].so->otype].funame,
397 source[sn].so->oname);
398 fprintf(fp, "\tat (%f,%f,%f)\n",
399 source[sn].sloc[0], source[sn].sloc[1], source[sn].sloc[2]);
400 fprintf(fp, "\tlinked to source %d (%s)\n",
401 source[sn].sa.sv.sn, source[source[sn].sa.sv.sn].so->oname);
402 if (source[sn].sflags & SFOLLOW)
403 fprintf(fp, "\talways followed\n");
404 else
405 fprintf(fp, "\tnever followed\n");
406 if (!(source[sn].sflags & SSPOT))
407 return;
408 fprintf(fp, "\twith spot aim (%f,%f,%f) and size %f\n",
409 source[sn].sl.s->aim[0], source[sn].sl.s->aim[1],
410 source[sn].sl.s->aim[2], source[sn].sl.s->siz);
411 }
412 #endif