ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/virtuals.c
Revision: 1.28
Committed: Mon Oct 21 12:58:18 1991 UTC (32 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.27: +12 -4 lines
Log Message:
added source sampling (-ds option)

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines for simulating virtual light sources
9 * Thus far, we only support planar mirrors.
10 */
11
12 #include "ray.h"
13
14 #include "octree.h"
15
16 #include "otypes.h"
17
18 #include "source.h"
19
20 #include "random.h"
21
22 #define MINSAMPLES 16 /* minimum number of pretest samples */
23 #define STESTMAX 32 /* maximum seeks per sample */
24
25
26 double getdisk();
27
28 static OBJECT *vobject; /* virtual source objects */
29 static int nvobjects = 0; /* number of virtual source objects */
30
31
32 markvirtuals() /* find and mark virtual sources */
33 {
34 register OBJREC *o;
35 register int i;
36 /* check number of direct relays */
37 if (directrelay <= 0)
38 return;
39 /* find virtual source objects */
40 for (i = 0; i < nobjects; i++) {
41 o = objptr(i);
42 if (!issurface(o->otype) || o->omod == OVOID)
43 continue;
44 if (!isvlight(objptr(o->omod)->otype))
45 continue;
46 if (sfun[o->otype].of == NULL ||
47 sfun[o->otype].of->getpleq == NULL) {
48 objerror(o,WARNING,"secondary sources not supported");
49 continue;
50 }
51 if (nvobjects == 0)
52 vobject = (OBJECT *)malloc(sizeof(OBJECT));
53 else
54 vobject = (OBJECT *)realloc((char *)vobject,
55 (unsigned)(nvobjects+1)*sizeof(OBJECT));
56 if (vobject == NULL)
57 error(SYSTEM, "out of memory in addvirtuals");
58 vobject[nvobjects++] = i;
59 }
60 if (nvobjects == 0)
61 return;
62 #ifdef DEBUG
63 fprintf(stderr, "found %d virtual source objects\n", nvobjects);
64 #endif
65 /* append virtual sources */
66 for (i = nsources; i-- > 0; )
67 addvirtuals(i, directrelay);
68 /* done with our object list */
69 free((char *)vobject);
70 nvobjects = 0;
71 }
72
73
74 addvirtuals(sn, nr) /* add virtuals associated with source */
75 int sn;
76 int nr;
77 {
78 register int i;
79 /* check relay limit first */
80 if (nr <= 0)
81 return;
82 if (source[sn].sflags & SSKIP)
83 return;
84 /* check each virtual object for projection */
85 for (i = 0; i < nvobjects; i++)
86 /* vproject() calls us recursively */
87 vproject(objptr(vobject[i]), sn, nr-1);
88 }
89
90
91 vproject(o, sn, n) /* create projected source(s) if they exist */
92 OBJREC *o;
93 int sn;
94 int n;
95 {
96 register int i;
97 register VSMATERIAL *vsmat;
98 MAT4 proj;
99 int ns;
100
101 if (o == source[sn].so) /* objects cannot project themselves */
102 return;
103 /* get virtual source material */
104 vsmat = sfun[objptr(o->omod)->otype].mf;
105 /* project virtual sources */
106 for (i = 0; i < vsmat->nproj; i++)
107 if ((*vsmat->vproj)(proj, o, &source[sn], i))
108 if ((ns = makevsrc(o, sn, proj)) >= 0) {
109 source[ns].sa.sv.pn = i;
110 #ifdef DEBUG
111 virtverb(ns, stderr);
112 #endif
113 addvirtuals(ns, n);
114 }
115 }
116
117
118 int
119 makevsrc(op, sn, pm) /* make virtual source if reasonable */
120 OBJREC *op;
121 register int sn;
122 MAT4 pm;
123 {
124 FVECT nsloc, nsnorm, ocent, v;
125 double maxrad2, d;
126 int nsflags;
127 SPOT theirspot, ourspot;
128 register int i;
129
130 nsflags = source[sn].sflags | (SVIRTUAL|SSPOT|SFOLLOW);
131 /* get object center and max. radius */
132 maxrad2 = getdisk(ocent, op, sn);
133 if (maxrad2 <= FTINY) /* too small? */
134 return(-1);
135 /* get location and spot */
136 if (source[sn].sflags & SDISTANT) { /* distant source */
137 if (source[sn].sflags & SPROX)
138 return(-1); /* should never get here! */
139 multv3(nsloc, source[sn].sloc, pm);
140 normalize(nsloc);
141 VCOPY(ourspot.aim, ocent);
142 ourspot.siz = PI*maxrad2;
143 ourspot.flen = 0.;
144 if (source[sn].sflags & SSPOT) {
145 multp3(theirspot.aim, source[sn].sl.s->aim, pm);
146 d = sqrt(dist2(ourspot.aim, theirspot.aim));
147 d = sqrt(source[sn].sl.s->siz/PI) + d*source[sn].srad;
148 theirspot.siz = PI*d*d;
149 ourspot.flen = theirspot.flen = source[sn].sl.s->flen;
150 d = ourspot.siz;
151 if (!commonbeam(&ourspot, &theirspot, nsloc))
152 return(-1); /* no overlap */
153 if (ourspot.siz < d-FTINY) { /* it shrunk */
154 d = beamdisk(v, op, &ourspot, nsloc);
155 if (d <= FTINY)
156 return(-1);
157 if (d < maxrad2) {
158 maxrad2 = d;
159 VCOPY(ocent, v);
160 }
161 }
162 }
163 } else { /* local source */
164 multp3(nsloc, source[sn].sloc, pm);
165 for (i = 0; i < 3; i++)
166 ourspot.aim[i] = ocent[i] - nsloc[i];
167 if ((d = normalize(ourspot.aim)) == 0.)
168 return(-1); /* at source!! */
169 if (source[sn].sflags & SPROX && d > source[sn].sl.prox)
170 return(-1); /* too far away */
171 ourspot.flen = 0.;
172 d = (sqrt(maxrad2) + source[sn].srad) / d;
173 if (d < 1.-FTINY)
174 ourspot.siz = 2.*PI*(1. - sqrt(1.-d*d));
175 else
176 nsflags &= ~SSPOT;
177 if (source[sn].sflags & SSPOT) {
178 copystruct(&theirspot, source[sn].sl.s);
179 multv3(theirspot.aim, source[sn].sl.s->aim, pm);
180 normalize(theirspot.aim);
181 if (nsflags & SSPOT) {
182 ourspot.flen = theirspot.flen;
183 d = ourspot.siz;
184 if (!commonspot(&ourspot, &theirspot, nsloc))
185 return(-1); /* no overlap */
186 } else {
187 nsflags |= SSPOT;
188 copystruct(&ourspot, &theirspot);
189 d = 2.*ourspot.siz;
190 }
191 if (ourspot.siz < d-FTINY) { /* it shrunk */
192 d = spotdisk(v, op, &ourspot, nsloc);
193 if (d <= FTINY)
194 return(-1);
195 if (d < maxrad2) {
196 maxrad2 = d;
197 VCOPY(ocent, v);
198 }
199 }
200 }
201 if (source[sn].sflags & SFLAT) { /* behind source? */
202 multv3(nsnorm, source[sn].snorm, pm);
203 normalize(nsnorm);
204 if (nsflags & SSPOT && !checkspot(&ourspot, nsnorm))
205 return(-1);
206 }
207 }
208 /* pretest visibility */
209 nsflags = vstestvis(nsflags, op, ocent, maxrad2, sn);
210 if (nsflags & SSKIP)
211 return(-1); /* obstructed */
212 /* it all checks out, so make it */
213 if ((i = newsource()) < 0)
214 goto memerr;
215 source[i].sflags = nsflags;
216 VCOPY(source[i].sloc, nsloc);
217 multv3(source[i].ss[SU], source[sn].ss[SU], pm);
218 multv3(source[i].ss[SV], source[sn].ss[SV], pm);
219 if (nsflags & SFLAT)
220 VCOPY(source[i].snorm, nsnorm);
221 else
222 multv3(source[i].ss[SW], source[sn].ss[SW], pm);
223 source[i].ss2 = source[sn].ss2;
224 if (nsflags & SSPOT) {
225 if ((source[i].sl.s = (SPOT *)malloc(sizeof(SPOT))) == NULL)
226 goto memerr;
227 copystruct(source[i].sl.s, &ourspot);
228 }
229 if (nsflags & SPROX)
230 source[i].sl.prox = source[sn].sl.prox;
231 source[i].sa.sv.sn = sn;
232 source[i].so = op;
233 return(i);
234 memerr:
235 error(SYSTEM, "out of memory in makevsrc");
236 }
237
238
239 double
240 getdisk(oc, op, sn) /* get visible object disk */
241 FVECT oc;
242 OBJREC *op;
243 register int sn;
244 {
245 double rad2, roffs, offs, d, rd, rdoto;
246 FVECT rnrm, nrm;
247 /* first, use object getdisk function */
248 rad2 = getmaxdisk(oc, op);
249 if (!(source[sn].sflags & SVIRTUAL))
250 return(rad2); /* all done for normal source */
251 /* check for correct side of relay surface */
252 roffs = getplaneq(rnrm, source[sn].so);
253 rd = DOT(rnrm, source[sn].sloc); /* source projection */
254 if (!(source[sn].sflags & SDISTANT))
255 rd -= roffs;
256 d = DOT(rnrm, oc) - roffs; /* disk distance to relay plane */
257 if ((d > 0.) ^ (rd > 0.))
258 return(rad2); /* OK if opposite sides */
259 if (d*d >= rad2)
260 return(0.); /* no relay is possible */
261 /* we need a closer look */
262 offs = getplaneq(nrm, op);
263 rdoto = DOT(rnrm, nrm);
264 if (d*d >= rad2*(1.-rdoto*rdoto))
265 return(0.); /* disk entirely on projection side */
266 /* should shrink disk but I'm lazy */
267 return(rad2);
268 }
269
270
271 int
272 vstestvis(f, o, oc, or2, sn) /* pretest source visibility */
273 int f; /* virtual source flags */
274 OBJREC *o; /* relay object */
275 FVECT oc; /* relay object center */
276 double or2; /* relay object radius squared */
277 register int sn; /* target source number */
278 {
279 RAY sr;
280 FVECT onorm;
281 FVECT offsdir;
282 SRCINDEX si;
283 double or, d;
284 int infront;
285 int stestlim, ssn;
286 int nhit, nok;
287 register int i, n;
288 /* return if pretesting disabled */
289 if (vspretest <= 0)
290 return(f);
291 /* get surface normal */
292 getplaneq(onorm, o);
293 /* set number of rays to sample */
294 if (source[sn].sflags & SDISTANT) {
295 /* 32. == heuristic constant */
296 n = 32.*or2/(thescene.cusize*thescene.cusize)*vspretest + .5;
297 infront = DOT(onorm, source[sn].sloc) > 0.;
298 } else {
299 for (i = 0; i < 3; i++)
300 offsdir[i] = source[sn].sloc[i] - oc[i];
301 d = DOT(offsdir,offsdir);
302 if (d <= FTINY)
303 n = 2.*PI * vspretest + .5;
304 else
305 n = 2.*PI * (1.-sqrt(1./(1.+or2/d)))*vspretest + .5;
306 infront = DOT(onorm, offsdir) > 0.;
307 }
308 if (n < MINSAMPLES) n = MINSAMPLES;
309 #ifdef DEBUG
310 fprintf(stderr, "pretesting source %d in object %s with %d rays\n",
311 sn, o->oname, n);
312 #endif
313 /* sample */
314 or = sqrt(or2);
315 stestlim = n*STESTMAX;
316 ssn = 0;
317 nhit = nok = 0;
318 while (n-- > 0) {
319 /* get sample point */
320 do {
321 if (ssn >= stestlim) {
322 #ifdef DEBUG
323 fprintf(stderr, "\ttoo hard to hit\n");
324 #endif
325 return(f); /* too small a target! */
326 }
327 multisamp(offsdir, 3, urand(sn*931+5827+ssn));
328 for (i = 0; i < 3; i++)
329 offsdir[i] = or*(1. - 2.*offsdir[i]);
330 ssn++;
331 for (i = 0; i < 3; i++)
332 sr.rorg[i] = oc[i] + offsdir[i];
333 d = DOT(offsdir,onorm);
334 if (infront)
335 for (i = 0; i < 3; i++) {
336 sr.rorg[i] -= (d-.0001)*onorm[i];
337 sr.rdir[i] = -onorm[i];
338 }
339 else
340 for (i = 0; i < 3; i++) {
341 sr.rorg[i] -= (d+.0001)*onorm[i];
342 sr.rdir[i] = onorm[i];
343 }
344 rayorigin(&sr, NULL, PRIMARY, 1.0);
345 } while (!(*ofun[o->otype].funp)(o, &sr));
346 /* check against source */
347 initsrcindex(&si);
348 si.sn = sn;
349 nopart(&si, sr.rorg);
350 samplendx++;
351 if (!srcray(&sr, NULL, &si) || sr.rsrc != sn)
352 continue;
353 sr.revf = srcvalue;
354 rayvalue(&sr);
355 if (bright(sr.rcol) <= FTINY)
356 continue;
357 nok++;
358 /* check against obstructions */
359 rayclear(&sr);
360 sr.revf = raytrace;
361 rayvalue(&sr);
362 if (bright(sr.rcol) > FTINY)
363 nhit++;
364 if (nhit > 0 && nhit < nok) {
365 #ifdef DEBUG
366 fprintf(stderr, "\tpartially occluded\n");
367 #endif
368 return(f); /* need to shadow test */
369 }
370 }
371 if (nhit == 0) {
372 #ifdef DEBUG
373 fprintf(stderr, "\t0%% hit rate\n");
374 #endif
375 return(f | SSKIP); /* 0% hit rate: totally occluded */
376 }
377 #ifdef DEBUG
378 fprintf(stderr, "\t100%% hit rate\n");
379 #endif
380 return(f & ~SFOLLOW); /* 100% hit rate: no occlusion */
381 }
382
383
384 #ifdef DEBUG
385 virtverb(sn, fp) /* print verbose description of virtual source */
386 register int sn;
387 FILE *fp;
388 {
389 register int i;
390
391 fprintf(fp, "%s virtual source %d in %s %s\n",
392 source[sn].sflags & SDISTANT ? "distant" : "local",
393 sn, ofun[source[sn].so->otype].funame,
394 source[sn].so->oname);
395 fprintf(fp, "\tat (%f,%f,%f)\n",
396 source[sn].sloc[0], source[sn].sloc[1], source[sn].sloc[2]);
397 fprintf(fp, "\tlinked to source %d (%s)\n",
398 source[sn].sa.sv.sn, source[source[sn].sa.sv.sn].so->oname);
399 if (source[sn].sflags & SFOLLOW)
400 fprintf(fp, "\talways followed\n");
401 else
402 fprintf(fp, "\tnever followed\n");
403 if (!(source[sn].sflags & SSPOT))
404 return;
405 fprintf(fp, "\twith spot aim (%f,%f,%f) and size %f\n",
406 source[sn].sl.s->aim[0], source[sn].sl.s->aim[1],
407 source[sn].sl.s->aim[2], source[sn].sl.s->siz);
408 }
409 #endif