ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/virtuals.c
Revision: 1.21
Committed: Mon Aug 5 09:02:42 1991 UTC (32 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.20: +4 -2 lines
Log Message:
changed fatal error to warning

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines for simulating virtual light sources
9 * Thus far, we only support planar mirrors.
10 */
11
12 #include "ray.h"
13
14 #include "octree.h"
15
16 #include "otypes.h"
17
18 #include "source.h"
19
20 #include "random.h"
21
22 #define MINSAMPLES 5 /* minimum number of pretest samples */
23 #define STESTMAX 30 /* maximum seeks per sample */
24
25
26 double getdisk();
27
28 static OBJECT *vobject; /* virtual source objects */
29 static int nvobjects = 0; /* number of virtual source objects */
30
31
32 markvirtuals() /* find and mark virtual sources */
33 {
34 register OBJREC *o;
35 register int i;
36 /* check number of direct relays */
37 if (directrelay <= 0)
38 return;
39 /* find virtual source objects */
40 for (i = 0; i < nobjects; i++) {
41 o = objptr(i);
42 if (!issurface(o->otype) || o->omod == OVOID)
43 continue;
44 if (!isvlight(objptr(o->omod)->otype))
45 continue;
46 if (sfun[o->otype].of == NULL ||
47 sfun[o->otype].of->getpleq == NULL) {
48 objerror(o,WARNING,"secondary sources not supported");
49 continue;
50 }
51 if (nvobjects == 0)
52 vobject = (OBJECT *)malloc(sizeof(OBJECT));
53 else
54 vobject = (OBJECT *)realloc((char *)vobject,
55 (unsigned)(nvobjects+1)*sizeof(OBJECT));
56 if (vobject == NULL)
57 error(SYSTEM, "out of memory in addvirtuals");
58 vobject[nvobjects++] = i;
59 }
60 if (nvobjects == 0)
61 return;
62 #ifdef DEBUG
63 fprintf(stderr, "found %d virtual source objects\n", nvobjects);
64 #endif
65 /* append virtual sources */
66 for (i = nsources; i-- > 0; )
67 addvirtuals(i, directrelay);
68 /* done with our object list */
69 free((char *)vobject);
70 nvobjects = 0;
71 }
72
73
74 addvirtuals(sn, nr) /* add virtuals associated with source */
75 int sn;
76 int nr;
77 {
78 register int i;
79 /* check relay limit first */
80 if (nr <= 0)
81 return;
82 if (source[sn].sflags & SSKIP)
83 return;
84 /* check each virtual object for projection */
85 for (i = 0; i < nvobjects; i++)
86 /* vproject() calls us recursively */
87 vproject(objptr(vobject[i]), sn, nr-1);
88 }
89
90
91 vproject(o, sn, n) /* create projected source(s) if they exist */
92 OBJREC *o;
93 int sn;
94 int n;
95 {
96 register int i;
97 register VSMATERIAL *vsmat;
98 MAT4 proj;
99 int ns;
100
101 if (o == source[sn].so) /* objects cannot project themselves */
102 return;
103 /* get virtual source material */
104 vsmat = sfun[objptr(o->omod)->otype].mf;
105 /* project virtual sources */
106 for (i = 0; i < vsmat->nproj; i++)
107 if ((*vsmat->vproj)(proj, o, &source[sn], i))
108 if ((ns = makevsrc(o, sn, proj)) >= 0) {
109 source[ns].sa.sv.pn = i;
110 #ifdef DEBUG
111 virtverb(ns, stderr);
112 #endif
113 addvirtuals(ns, n);
114 }
115 }
116
117
118 int
119 makevsrc(op, sn, pm) /* make virtual source if reasonable */
120 OBJREC *op;
121 register int sn;
122 MAT4 pm;
123 {
124 FVECT nsloc, nsnorm, ocent, v;
125 double maxrad2, d;
126 int nsflags;
127 SPOT theirspot, ourspot;
128 register int i;
129
130 nsflags = source[sn].sflags | (SVIRTUAL|SSPOT|SFOLLOW);
131 /* get object center and max. radius */
132 maxrad2 = getdisk(ocent, op, sn);
133 if (maxrad2 <= FTINY) /* too small? */
134 return(-1);
135 /* get location and spot */
136 if (source[sn].sflags & SDISTANT) { /* distant source */
137 if (source[sn].sflags & SPROX)
138 return(-1); /* should never get here! */
139 multv3(nsloc, source[sn].sloc, pm);
140 normalize(nsloc);
141 VCOPY(ourspot.aim, ocent);
142 ourspot.siz = PI*maxrad2;
143 ourspot.flen = 0.;
144 if (source[sn].sflags & SSPOT) {
145 multp3(theirspot.aim, source[sn].sl.s->aim, pm);
146 d = sqrt(dist2(ourspot.aim, theirspot.aim));
147 d = sqrt(source[sn].sl.s->siz/PI) + d*source[sn].ss;
148 theirspot.siz = PI*d*d;
149 ourspot.flen = theirspot.flen = source[sn].sl.s->flen;
150 d = ourspot.siz;
151 if (!commonbeam(&ourspot, &theirspot, nsloc))
152 return(-1); /* no overlap */
153 if (ourspot.siz < d-FTINY) { /* it shrunk */
154 d = beamdisk(v, op, &ourspot, nsloc);
155 if (d <= FTINY)
156 return(-1);
157 if (d < maxrad2) {
158 maxrad2 = d;
159 VCOPY(ocent, v);
160 }
161 }
162 }
163 } else { /* local source */
164 multp3(nsloc, source[sn].sloc, pm);
165 for (i = 0; i < 3; i++)
166 ourspot.aim[i] = ocent[i] - nsloc[i];
167 if ((d = normalize(ourspot.aim)) == 0.)
168 return(-1); /* at source!! */
169 if (source[sn].sflags & SPROX && d > source[sn].sl.prox)
170 return(-1); /* too far away */
171 ourspot.flen = 0.;
172 d = (sqrt(maxrad2) + source[sn].ss) / d;
173 if (d < 1.-FTINY)
174 ourspot.siz = 2.*PI*(1. - sqrt(1.-d*d));
175 else
176 nsflags &= ~SSPOT;
177 if (source[sn].sflags & SSPOT) {
178 copystruct(&theirspot, source[sn].sl.s);
179 multv3(theirspot.aim, source[sn].sl.s->aim, pm);
180 normalize(theirspot.aim);
181 if (nsflags & SSPOT) {
182 ourspot.flen = theirspot.flen;
183 d = ourspot.siz;
184 if (!commonspot(&ourspot, &theirspot, nsloc))
185 return(-1); /* no overlap */
186 } else {
187 nsflags |= SSPOT;
188 copystruct(&ourspot, &theirspot);
189 d = 2.*ourspot.siz;
190 }
191 if (ourspot.siz < d-FTINY) { /* it shrunk */
192 d = spotdisk(v, op, &ourspot, nsloc);
193 if (d <= FTINY)
194 return(-1);
195 if (d < maxrad2) {
196 maxrad2 = d;
197 VCOPY(ocent, v);
198 }
199 }
200 }
201 if (source[sn].sflags & SFLAT) { /* behind source? */
202 multv3(nsnorm, source[sn].snorm, pm);
203 normalize(nsnorm);
204 if (nsflags & SSPOT && !checkspot(&ourspot, nsnorm))
205 return(-1);
206 }
207 }
208 /* pretest visibility */
209 nsflags = vstestvis(nsflags, op, ocent, maxrad2, sn);
210 if (nsflags & SSKIP)
211 return(-1); /* obstructed */
212 /* it all checks out, so make it */
213 if ((i = newsource()) < 0)
214 goto memerr;
215 source[i].sflags = nsflags;
216 VCOPY(source[i].sloc, nsloc);
217 if (nsflags & SFLAT)
218 VCOPY(source[i].snorm, nsnorm);
219 source[i].ss = source[sn].ss; source[i].ss2 = source[sn].ss2;
220 if (nsflags & SSPOT) {
221 if ((source[i].sl.s = (SPOT *)malloc(sizeof(SPOT))) == NULL)
222 goto memerr;
223 copystruct(source[i].sl.s, &ourspot);
224 }
225 if (nsflags & SPROX)
226 source[i].sl.prox = source[sn].sl.prox;
227 source[i].sa.sv.sn = sn;
228 source[i].so = op;
229 return(i);
230 memerr:
231 error(SYSTEM, "out of memory in makevsrc");
232 }
233
234
235 double
236 getdisk(oc, op, sn) /* get visible object disk */
237 FVECT oc;
238 OBJREC *op;
239 register int sn;
240 {
241 double rad2, roffs, offs, d, rd, rdoto;
242 FVECT rnrm, nrm;
243 /* first, use object getdisk function */
244 rad2 = getmaxdisk(oc, op);
245 if (!(source[sn].sflags & SVIRTUAL))
246 return(rad2); /* all done for normal source */
247 /* check for correct side of relay surface */
248 roffs = getplaneq(rnrm, source[sn].so);
249 rd = DOT(rnrm, source[sn].sloc); /* source projection */
250 if (!(source[sn].sflags & SDISTANT))
251 rd -= roffs;
252 d = DOT(rnrm, oc) - roffs; /* disk distance to relay plane */
253 if ((d > 0.) ^ (rd > 0.))
254 return(rad2); /* OK if opposite sides */
255 if (d*d >= rad2)
256 return(0.); /* no relay is possible */
257 /* we need a closer look */
258 offs = getplaneq(nrm, op);
259 rdoto = DOT(rnrm, nrm);
260 if (d*d >= rad2*(1.-rdoto*rdoto))
261 return(0.); /* disk entirely on projection side */
262 /* should shrink disk but I'm lazy */
263 return(rad2);
264 }
265
266
267 int
268 vstestvis(f, o, oc, or2, sn) /* pretest source visibility */
269 int f; /* virtual source flags */
270 OBJREC *o; /* relay object */
271 FVECT oc; /* relay object center */
272 double or2; /* relay object radius squared */
273 register int sn; /* target source number */
274 {
275 RAY sr;
276 FVECT onorm;
277 FVECT offsdir;
278 double or, d;
279 int infront;
280 int stestlim, ssn;
281 int nhit, nok;
282 register int i, n;
283 /* return if pretesting disabled */
284 if (vspretest <= 0)
285 return(f);
286 /* get surface normal */
287 getplaneq(onorm, o);
288 /* set number of rays to sample */
289 if (source[sn].sflags & SDISTANT) {
290 n = (2./3.*PI*PI)*or2/(thescene.cusize*thescene.cusize)*
291 vspretest + .5;
292 infront = DOT(onorm, source[sn].sloc) > 0.;
293 } else {
294 for (i = 0; i < 3; i++)
295 offsdir[i] = source[sn].sloc[i] - oc[i];
296 d = DOT(offsdir,offsdir);
297 if (d <= FTINY)
298 n = 2.*PI * vspretest + .5;
299 else
300 n = 2.*PI * (1.-sqrt(1./(1.+or2/d)))*vspretest + .5;
301 infront = DOT(onorm, offsdir) > 0.;
302 }
303 if (n < MINSAMPLES) n = MINSAMPLES;
304 #ifdef DEBUG
305 fprintf(stderr, "pretesting source %d in object %s with %d rays\n",
306 sn, o->oname, n);
307 #endif
308 /* sample */
309 or = sqrt(or2);
310 stestlim = n*STESTMAX;
311 ssn = 0;
312 nhit = nok = 0;
313 while (n-- > 0) {
314 /* get sample point */
315 do {
316 if (ssn >= stestlim) {
317 #ifdef DEBUG
318 fprintf(stderr, "\ttoo hard to hit\n");
319 #endif
320 return(f); /* too small a target! */
321 }
322 for (i = 0; i < 3; i++)
323 offsdir[i] = or*(1. -
324 2.*urand(urind(931*i+5827,ssn)));
325 ssn++;
326 for (i = 0; i < 3; i++)
327 sr.rorg[i] = oc[i] + offsdir[i];
328 d = DOT(offsdir,onorm);
329 if (infront)
330 for (i = 0; i < 3; i++) {
331 sr.rorg[i] -= (d-.0001)*onorm[i];
332 sr.rdir[i] = -onorm[i];
333 }
334 else
335 for (i = 0; i < 3; i++) {
336 sr.rorg[i] -= (d+.0001)*onorm[i];
337 sr.rdir[i] = onorm[i];
338 }
339 rayorigin(&sr, NULL, PRIMARY, 1.0);
340 } while (!(*ofun[o->otype].funp)(o, &sr));
341 /* check against source */
342 samplendx++;
343 if (srcray(&sr, NULL, sn) == 0.)
344 continue;
345 sr.revf = srcvalue;
346 rayvalue(&sr);
347 if (bright(sr.rcol) <= FTINY)
348 continue;
349 nok++;
350 /* check against obstructions */
351 rayclear(&sr);
352 sr.revf = raytrace;
353 rayvalue(&sr);
354 if (bright(sr.rcol) > FTINY)
355 nhit++;
356 if (nhit > 0 && nhit < nok) {
357 #ifdef DEBUG
358 fprintf(stderr, "\tpartially occluded\n");
359 #endif
360 return(f); /* need to shadow test */
361 }
362 }
363 if (nhit == 0) {
364 #ifdef DEBUG
365 fprintf(stderr, "\t0%% hit rate\n");
366 #endif
367 return(f | SSKIP); /* 0% hit rate: totally occluded */
368 }
369 #ifdef DEBUG
370 fprintf(stderr, "\t100%% hit rate\n");
371 #endif
372 return(f & ~SFOLLOW); /* 100% hit rate: no occlusion */
373 }
374
375
376 #ifdef DEBUG
377 virtverb(sn, fp) /* print verbose description of virtual source */
378 register int sn;
379 FILE *fp;
380 {
381 register int i;
382
383 fprintf(fp, "%s virtual source %d in %s %s\n",
384 source[sn].sflags & SDISTANT ? "distant" : "local",
385 sn, ofun[source[sn].so->otype].funame,
386 source[sn].so->oname);
387 fprintf(fp, "\tat (%f,%f,%f)\n",
388 source[sn].sloc[0], source[sn].sloc[1], source[sn].sloc[2]);
389 fprintf(fp, "\tlinked to source %d (%s)\n",
390 source[sn].sa.sv.sn, source[source[sn].sa.sv.sn].so->oname);
391 if (source[sn].sflags & SFOLLOW)
392 fprintf(fp, "\talways followed\n");
393 else
394 fprintf(fp, "\tnever followed\n");
395 if (!(source[sn].sflags & SSPOT))
396 return;
397 fprintf(fp, "\twith spot aim (%f,%f,%f) and size %f\n",
398 source[sn].sl.s->aim[0], source[sn].sl.s->aim[1],
399 source[sn].sl.s->aim[2], source[sn].sl.s->siz);
400 }
401 #endif