ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.7
Committed: Thu Aug 24 20:56:08 1995 UTC (28 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +2 -3 lines
Log Message:
removed unnecessary test for last vertex == first vertex

File Contents

# Content
1 /* Copyright (c) 1995 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Support routines for source objects and materials
9 */
10
11 #include "ray.h"
12
13 #include "otypes.h"
14
15 #include "source.h"
16
17 #include "cone.h"
18
19 #include "face.h"
20
21 #define SRCINC 4 /* realloc increment for array */
22
23 SRCREC *source = NULL; /* our list of sources */
24 int nsources = 0; /* the number of sources */
25
26 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
27
28
29 initstypes() /* initialize source dispatch table */
30 {
31 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
32 extern int fsetsrc(), ssetsrc(), sphsetsrc(), cylsetsrc(), rsetsrc();
33 extern int nopart(), flatpart(), cylpart();
34 extern double fgetplaneq(), rgetplaneq();
35 extern double fgetmaxdisk(), rgetmaxdisk();
36 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
37 static SOBJECT ssobj = {ssetsrc, nopart};
38 static SOBJECT sphsobj = {sphsetsrc, nopart};
39 static SOBJECT cylsobj = {cylsetsrc, cylpart};
40 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
41
42 sfun[MAT_MIRROR].mf = &mirror_vs;
43 sfun[MAT_DIRECT1].mf = &direct1_vs;
44 sfun[MAT_DIRECT2].mf = &direct2_vs;
45 sfun[OBJ_FACE].of = &fsobj;
46 sfun[OBJ_SOURCE].of = &ssobj;
47 sfun[OBJ_SPHERE].of = &sphsobj;
48 sfun[OBJ_CYLINDER].of = &cylsobj;
49 sfun[OBJ_RING].of = &rsobj;
50 }
51
52
53 int
54 newsource() /* allocate new source in our array */
55 {
56 if (nsources == 0)
57 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
58 else if (nsources%SRCINC == 0)
59 source = (SRCREC *)realloc((char *)source,
60 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
61 if (source == NULL)
62 return(-1);
63 source[nsources].sflags = 0;
64 source[nsources].nhits = 1;
65 source[nsources].ntests = 2; /* initial hit probability = 1/2 */
66 return(nsources++);
67 }
68
69
70 setflatss(src) /* set sampling for a flat source */
71 register SRCREC *src;
72 {
73 double mult;
74 register int i;
75
76 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
77 for (i = 0; i < 3; i++)
78 if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
79 break;
80 src->ss[SV][i] = 1.0;
81 fcross(src->ss[SU], src->ss[SV], src->snorm);
82 mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
83 for (i = 0; i < 3; i++)
84 src->ss[SU][i] *= mult;
85 fcross(src->ss[SV], src->snorm, src->ss[SU]);
86 }
87
88
89 fsetsrc(src, so) /* set a face as a source */
90 register SRCREC *src;
91 OBJREC *so;
92 {
93 register FACE *f;
94 register int i, j;
95 double d;
96
97 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98 src->so = so;
99 /* get the face */
100 f = getface(so);
101 /* find the center */
102 for (j = 0; j < 3; j++) {
103 src->sloc[j] = 0.0;
104 for (i = 0; i < f->nv; i++)
105 src->sloc[j] += VERTEX(f,i)[j];
106 src->sloc[j] /= (double)f->nv;
107 }
108 if (!inface(src->sloc, f))
109 objerror(so, USER, "cannot hit center");
110 src->sflags |= SFLAT;
111 VCOPY(src->snorm, f->norm);
112 src->ss2 = f->area;
113 /* find maximum radius */
114 src->srad = 0.;
115 for (i = 0; i < f->nv; i++) {
116 d = dist2(VERTEX(f,i), src->sloc);
117 if (d > src->srad)
118 src->srad = d;
119 }
120 src->srad = sqrt(src->srad);
121 /* compute size vectors */
122 if (f->nv == 4) /* parallelogram case */
123 for (j = 0; j < 3; j++) {
124 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
125 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
126 }
127 else
128 setflatss(src);
129 }
130
131
132 ssetsrc(src, so) /* set a source as a source */
133 register SRCREC *src;
134 register OBJREC *so;
135 {
136 double theta;
137
138 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
139 src->so = so;
140 if (so->oargs.nfargs != 4)
141 objerror(so, USER, "bad arguments");
142 src->sflags |= SDISTANT;
143 VCOPY(src->sloc, so->oargs.farg);
144 if (normalize(src->sloc) == 0.0)
145 objerror(so, USER, "zero direction");
146 theta = PI/180.0/2.0 * so->oargs.farg[3];
147 if (theta <= FTINY)
148 objerror(so, USER, "zero size");
149 src->ss2 = 2.0*PI * (1.0 - cos(theta));
150 /* the following is approximate */
151 src->srad = sqrt(src->ss2/PI);
152 VCOPY(src->snorm, src->sloc);
153 setflatss(src); /* hey, whatever works */
154 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
155 }
156
157
158 sphsetsrc(src, so) /* set a sphere as a source */
159 register SRCREC *src;
160 register OBJREC *so;
161 {
162 register int i;
163
164 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
165 src->so = so;
166 if (so->oargs.nfargs != 4)
167 objerror(so, USER, "bad # arguments");
168 if (so->oargs.farg[3] <= FTINY)
169 objerror(so, USER, "illegal radius");
170 VCOPY(src->sloc, so->oargs.farg);
171 src->srad = so->oargs.farg[3];
172 src->ss2 = PI * src->srad * src->srad;
173 for (i = 0; i < 3; i++)
174 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
175 for (i = 0; i < 3; i++)
176 src->ss[i][i] = .7236 * so->oargs.farg[3];
177 }
178
179
180 rsetsrc(src, so) /* set a ring (disk) as a source */
181 register SRCREC *src;
182 OBJREC *so;
183 {
184 register CONE *co;
185
186 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
187 src->so = so;
188 /* get the ring */
189 co = getcone(so, 0);
190 VCOPY(src->sloc, CO_P0(co));
191 if (CO_R0(co) > 0.0)
192 objerror(so, USER, "cannot hit center");
193 src->sflags |= SFLAT;
194 VCOPY(src->snorm, co->ad);
195 src->srad = CO_R1(co);
196 src->ss2 = PI * src->srad * src->srad;
197 setflatss(src);
198 }
199
200
201 cylsetsrc(src, so) /* set a cylinder as a source */
202 register SRCREC *src;
203 OBJREC *so;
204 {
205 register CONE *co;
206 register int i;
207
208 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
209 src->so = so;
210 /* get the cylinder */
211 co = getcone(so, 0);
212 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
213 objerror(so, WARNING, "source aspect too small");
214 src->sflags |= SCYL;
215 for (i = 0; i < 3; i++)
216 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
217 src->srad = .5*co->al;
218 src->ss2 = 2.*CO_R0(co)*co->al;
219 /* set sampling vectors */
220 for (i = 0; i < 3; i++)
221 src->ss[SU][i] = .5 * co->al * co->ad[i];
222 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
223 for (i = 0; i < 3; i++)
224 if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
225 break;
226 src->ss[SV][i] = 1.0;
227 fcross(src->ss[SW], src->ss[SV], co->ad);
228 normalize(src->ss[SW]);
229 for (i = 0; i < 3; i++)
230 src->ss[SW][i] *= .8559 * CO_R0(co);
231 fcross(src->ss[SV], src->ss[SW], co->ad);
232 }
233
234
235 SPOT *
236 makespot(m) /* make a spotlight */
237 register OBJREC *m;
238 {
239 register SPOT *ns;
240
241 if ((ns = (SPOT *)m->os) != NULL)
242 return(ns);
243 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
244 return(NULL);
245 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
246 VCOPY(ns->aim, m->oargs.farg+4);
247 if ((ns->flen = normalize(ns->aim)) == 0.0)
248 objerror(m, USER, "zero focus vector");
249 m->os = (char *)ns;
250 return(ns);
251 }
252
253
254 spotout(r, s, dist) /* check if we're outside spot region */
255 register RAY *r;
256 register SPOT *s;
257 int dist;
258 {
259 double d;
260 FVECT vd;
261
262 if (s == NULL)
263 return(0);
264 if (dist) { /* distant source */
265 vd[0] = s->aim[0] - r->rorg[0];
266 vd[1] = s->aim[1] - r->rorg[1];
267 vd[2] = s->aim[2] - r->rorg[2];
268 d = DOT(r->rdir,vd);
269 /* wrong side?
270 if (d <= FTINY)
271 return(1); */
272 d = DOT(vd,vd) - d*d;
273 if (PI*d > s->siz)
274 return(1); /* out */
275 return(0); /* OK */
276 }
277 /* local source */
278 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
279 return(1); /* out */
280 return(0); /* OK */
281 }
282
283
284 double
285 fgetmaxdisk(ocent, op) /* get center and squared radius of face */
286 FVECT ocent;
287 OBJREC *op;
288 {
289 double maxrad2;
290 double d;
291 register int i, j;
292 register FACE *f;
293
294 f = getface(op);
295 if (f->area == 0.)
296 return(0.);
297 for (i = 0; i < 3; i++) {
298 ocent[i] = 0.;
299 for (j = 0; j < f->nv; j++)
300 ocent[i] += VERTEX(f,j)[i];
301 ocent[i] /= (double)f->nv;
302 }
303 d = DOT(ocent,f->norm);
304 for (i = 0; i < 3; i++)
305 ocent[i] += (f->offset - d)*f->norm[i];
306 maxrad2 = 0.;
307 for (j = 0; j < f->nv; j++) {
308 d = dist2(VERTEX(f,j), ocent);
309 if (d > maxrad2)
310 maxrad2 = d;
311 }
312 return(maxrad2);
313 }
314
315
316 double
317 rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
318 FVECT ocent;
319 OBJREC *op;
320 {
321 register CONE *co;
322
323 co = getcone(op, 0);
324 VCOPY(ocent, CO_P0(co));
325 return(CO_R1(co)*CO_R1(co));
326 }
327
328
329 double
330 fgetplaneq(nvec, op) /* get plane equation for face */
331 FVECT nvec;
332 OBJREC *op;
333 {
334 register FACE *fo;
335
336 fo = getface(op);
337 VCOPY(nvec, fo->norm);
338 return(fo->offset);
339 }
340
341
342 double
343 rgetplaneq(nvec, op) /* get plane equation for ring */
344 FVECT nvec;
345 OBJREC *op;
346 {
347 register CONE *co;
348
349 co = getcone(op, 0);
350 VCOPY(nvec, co->ad);
351 return(DOT(nvec, CO_P0(co)));
352 }
353
354
355 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
356 register SPOT *sp1, *sp2;
357 FVECT org;
358 {
359 FVECT cent;
360 double rad2, cos1, cos2;
361
362 cos1 = 1. - sp1->siz/(2.*PI);
363 cos2 = 1. - sp2->siz/(2.*PI);
364 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
365 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
366 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
367 /* compute and check disks */
368 rad2 = intercircle(cent, sp1->aim, sp2->aim,
369 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
370 if (rad2 <= FTINY || normalize(cent) == 0.)
371 return(0);
372 VCOPY(sp1->aim, cent);
373 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
374 return(1);
375 }
376
377
378 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
379 register SPOT *sp1, *sp2;
380 FVECT dir;
381 {
382 FVECT cent, c1, c2;
383 double rad2, d;
384 register int i;
385 /* move centers to common plane */
386 d = DOT(sp1->aim, dir);
387 for (i = 0; i < 3; i++)
388 c1[i] = sp1->aim[i] - d*dir[i];
389 d = DOT(sp2->aim, dir);
390 for (i = 0; i < 3; i++)
391 c2[i] = sp2->aim[i] - d*dir[i];
392 /* compute overlap */
393 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
394 if (rad2 <= FTINY)
395 return(0);
396 VCOPY(sp1->aim, cent);
397 sp1->siz = PI*rad2;
398 return(1);
399 }
400
401
402 checkspot(sp, nrm) /* check spotlight for behind source */
403 register SPOT *sp; /* spotlight */
404 FVECT nrm; /* source surface normal */
405 {
406 double d, d1;
407
408 d = DOT(sp->aim, nrm);
409 if (d > FTINY) /* center in front? */
410 return(1);
411 /* else check horizon */
412 d1 = 1. - sp->siz/(2.*PI);
413 return(1.-FTINY-d*d < d1*d1);
414 }
415
416
417 double
418 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
419 FVECT oc;
420 OBJREC *op;
421 register SPOT *sp;
422 FVECT pos;
423 {
424 FVECT onorm;
425 double offs, d, dist;
426 register int i;
427
428 offs = getplaneq(onorm, op);
429 d = -DOT(onorm, sp->aim);
430 if (d >= -FTINY && d <= FTINY)
431 return(0.);
432 dist = (DOT(pos, onorm) - offs)/d;
433 if (dist < 0.)
434 return(0.);
435 for (i = 0; i < 3; i++)
436 oc[i] = pos[i] + dist*sp->aim[i];
437 return(sp->siz*dist*dist/PI/(d*d));
438 }
439
440
441 double
442 beamdisk(oc, op, sp, dir) /* intersect beam with object op */
443 FVECT oc;
444 OBJREC *op;
445 register SPOT *sp;
446 FVECT dir;
447 {
448 FVECT onorm;
449 double offs, d, dist;
450 register int i;
451
452 offs = getplaneq(onorm, op);
453 d = -DOT(onorm, dir);
454 if (d >= -FTINY && d <= FTINY)
455 return(0.);
456 dist = (DOT(sp->aim, onorm) - offs)/d;
457 for (i = 0; i < 3; i++)
458 oc[i] = sp->aim[i] + dist*dir[i];
459 return(sp->siz/PI/(d*d));
460 }
461
462
463 double
464 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
465 FVECT cc; /* midpoint (return value) */
466 FVECT c1, c2; /* circle centers */
467 double r1s, r2s; /* radii squared */
468 {
469 double a2, d2, l;
470 FVECT disp;
471 register int i;
472
473 for (i = 0; i < 3; i++)
474 disp[i] = c2[i] - c1[i];
475 d2 = DOT(disp,disp);
476 /* circle within overlap? */
477 if (r1s < r2s) {
478 if (r2s >= r1s + d2) {
479 VCOPY(cc, c1);
480 return(r1s);
481 }
482 } else {
483 if (r1s >= r2s + d2) {
484 VCOPY(cc, c2);
485 return(r2s);
486 }
487 }
488 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
489 /* no overlap? */
490 if (a2 <= 0.)
491 return(0.);
492 /* overlap, compute center */
493 l = sqrt((r1s - a2)/d2);
494 for (i = 0; i < 3; i++)
495 cc[i] = c1[i] + l*disp[i];
496 return(a2);
497 }