ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.23
Committed: Thu Apr 21 00:40:35 2016 UTC (8 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad5R1, rad5R3
Changes since 2.22: +12 -2 lines
Log Message:
Made zero cone and ring radii non-fatal (degenerate -> ignore)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsupp.c,v 2.22 2015/05/21 05:54:54 greg Exp $";
3 #endif
4 /*
5 * Support routines for source objects and materials
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "otypes.h"
15
16 #include "source.h"
17
18 #include "cone.h"
19
20 #include "face.h"
21
22 #define SRCINC 32 /* realloc increment for array */
23
24 SRCREC *source = NULL; /* our list of sources */
25 int nsources = 0; /* the number of sources */
26
27 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28
29
30 void
31 initstypes(void) /* initialize source dispatch table */
32 {
33 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35 static SOBJECT ssobj = {ssetsrc, nopart};
36 static SOBJECT sphsobj = {sphsetsrc, nopart};
37 static SOBJECT cylsobj = {cylsetsrc, cylpart};
38 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39
40 sfun[MAT_MIRROR].mf = &mirror_vs;
41 sfun[MAT_DIRECT1].mf = &direct1_vs;
42 sfun[MAT_DIRECT2].mf = &direct2_vs;
43 sfun[OBJ_FACE].of = &fsobj;
44 sfun[OBJ_SOURCE].of = &ssobj;
45 sfun[OBJ_SPHERE].of = &sphsobj;
46 sfun[OBJ_CYLINDER].of = &cylsobj;
47 sfun[OBJ_RING].of = &rsobj;
48 }
49
50
51 int
52 newsource(void) /* allocate new source in our array */
53 {
54 if (nsources == 0)
55 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56 else if (nsources%SRCINC == 0)
57 source = (SRCREC *)realloc((void *)source,
58 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 if (source == NULL)
60 return(-1);
61 source[nsources].sflags = 0;
62 source[nsources].nhits = 1;
63 source[nsources].ntests = 2; /* initial hit probability = 50% */
64 #if SHADCACHE
65 source[nsources].obscache = NULL;
66 #endif
67 return(nsources++);
68 }
69
70
71 void
72 setflatss( /* set sampling for a flat source */
73 SRCREC *src
74 )
75 {
76 double mult;
77 int i;
78
79 getperpendicular(src->ss[SU], src->snorm, rand_samp);
80 mult = .5 * sqrt( src->ss2 );
81 for (i = 0; i < 3; i++)
82 src->ss[SU][i] *= mult;
83 fcross(src->ss[SV], src->snorm, src->ss[SU]);
84 }
85
86
87 void
88 fsetsrc( /* set a face as a source */
89 SRCREC *src,
90 OBJREC *so
91 )
92 {
93 FACE *f;
94 int i, j;
95 double d;
96
97 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98 src->so = so;
99 /* get the face */
100 f = getface(so);
101 if (f->area == 0.)
102 objerror(so, USER, "zero source area");
103 /* find the center */
104 for (j = 0; j < 3; j++) {
105 src->sloc[j] = 0.0;
106 for (i = 0; i < f->nv; i++)
107 src->sloc[j] += VERTEX(f,i)[j];
108 src->sloc[j] /= (double)f->nv;
109 }
110 if (!inface(src->sloc, f))
111 objerror(so, USER, "cannot hit source center");
112 src->sflags |= SFLAT;
113 VCOPY(src->snorm, f->norm);
114 src->ss2 = f->area;
115 /* find maximum radius */
116 src->srad = 0.;
117 for (i = 0; i < f->nv; i++) {
118 d = dist2(VERTEX(f,i), src->sloc);
119 if (d > src->srad)
120 src->srad = d;
121 }
122 src->srad = sqrt(src->srad);
123 /* compute size vectors */
124 if (f->nv == 4) /* parallelogram case */
125 for (j = 0; j < 3; j++) {
126 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
127 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
128 }
129 else
130 setflatss(src);
131 }
132
133
134 void
135 ssetsrc( /* set a source as a source */
136 SRCREC *src,
137 OBJREC *so
138 )
139 {
140 double theta;
141
142 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
143 src->so = so;
144 if (so->oargs.nfargs != 4)
145 objerror(so, USER, "bad arguments");
146 src->sflags |= (SDISTANT|SCIR);
147 VCOPY(src->sloc, so->oargs.farg);
148 if (normalize(src->sloc) == 0.0)
149 objerror(so, USER, "zero direction");
150 theta = PI/180.0/2.0 * so->oargs.farg[3];
151 if (theta <= FTINY)
152 objerror(so, USER, "zero size");
153 src->ss2 = 2.0*PI * (1.0 - cos(theta));
154 /* the following is approximate */
155 src->srad = sqrt(src->ss2/PI);
156 VCOPY(src->snorm, src->sloc);
157 setflatss(src); /* hey, whatever works */
158 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
159 }
160
161
162 void
163 sphsetsrc( /* set a sphere as a source */
164 SRCREC *src,
165 OBJREC *so
166 )
167 {
168 int i;
169
170 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
171 src->so = so;
172 if (so->oargs.nfargs != 4)
173 objerror(so, USER, "bad # arguments");
174 if (so->oargs.farg[3] <= FTINY)
175 objerror(so, USER, "illegal source radius");
176 src->sflags |= SCIR;
177 VCOPY(src->sloc, so->oargs.farg);
178 src->srad = so->oargs.farg[3];
179 src->ss2 = PI * src->srad * src->srad;
180 for (i = 0; i < 3; i++)
181 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
182 for (i = 0; i < 3; i++)
183 src->ss[i][i] = 0.7236 * so->oargs.farg[3];
184 }
185
186
187 void
188 rsetsrc( /* set a ring (disk) as a source */
189 SRCREC *src,
190 OBJREC *so
191 )
192 {
193 CONE *co;
194
195 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
196 src->so = so;
197 /* get the ring */
198 co = getcone(so, 0);
199 if (co == NULL)
200 objerror(so, USER, "illegal source");
201 if (CO_R1(co) <= FTINY)
202 objerror(so, USER, "illegal source radius");
203 VCOPY(src->sloc, CO_P0(co));
204 if (CO_R0(co) > 0.0)
205 objerror(so, USER, "cannot hit source center");
206 src->sflags |= (SFLAT|SCIR);
207 VCOPY(src->snorm, co->ad);
208 src->srad = CO_R1(co);
209 src->ss2 = PI * src->srad * src->srad;
210 setflatss(src);
211 }
212
213
214 void
215 cylsetsrc( /* set a cylinder as a source */
216 SRCREC *src,
217 OBJREC *so
218 )
219 {
220 CONE *co;
221 int i;
222
223 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
224 src->so = so;
225 /* get the cylinder */
226 co = getcone(so, 0);
227 if (co == NULL)
228 objerror(so, USER, "illegal source");
229 if (CO_R0(co) <= FTINY)
230 objerror(so, USER, "illegal source radius");
231 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
232 objerror(so, WARNING, "source aspect too small");
233 src->sflags |= SCYL;
234 for (i = 0; i < 3; i++)
235 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
236 src->srad = .5*co->al;
237 src->ss2 = 2.*CO_R0(co)*co->al;
238 /* set sampling vectors */
239 for (i = 0; i < 3; i++)
240 src->ss[SU][i] = .5 * co->al * co->ad[i];
241 getperpendicular(src->ss[SW], co->ad, rand_samp);
242 for (i = 0; i < 3; i++)
243 src->ss[SW][i] *= .8559 * CO_R0(co);
244 fcross(src->ss[SV], src->ss[SW], co->ad);
245 }
246
247
248 SPOT *
249 makespot( /* make a spotlight */
250 OBJREC *m
251 )
252 {
253 SPOT *ns;
254
255 if ((ns = (SPOT *)m->os) != NULL)
256 return(ns);
257 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
258 return(NULL);
259 if (m->oargs.farg[3] <= FTINY)
260 objerror(m, USER, "zero angle");
261 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
262 VCOPY(ns->aim, m->oargs.farg+4);
263 if ((ns->flen = normalize(ns->aim)) == 0.0)
264 objerror(m, USER, "zero focus vector");
265 m->os = (char *)ns;
266 return(ns);
267 }
268
269
270 int
271 spotout( /* check if we're outside spot region */
272 RAY *r,
273 SPOT *s
274 )
275 {
276 double d;
277 FVECT vd;
278
279 if (s == NULL)
280 return(0);
281 if (s->flen < -FTINY) { /* distant source */
282 vd[0] = s->aim[0] - r->rorg[0];
283 vd[1] = s->aim[1] - r->rorg[1];
284 vd[2] = s->aim[2] - r->rorg[2];
285 d = DOT(r->rdir,vd);
286 /* wrong side?
287 if (d <= FTINY)
288 return(1); */
289 d = DOT(vd,vd) - d*d;
290 if (PI*d > s->siz)
291 return(1); /* out */
292 return(0); /* OK */
293 }
294 /* local source */
295 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
296 return(1); /* out */
297 return(0); /* OK */
298 }
299
300
301 double
302 fgetmaxdisk( /* get center and squared radius of face */
303 FVECT ocent,
304 OBJREC *op
305 )
306 {
307 double maxrad2;
308 double d;
309 int i, j;
310 FACE *f;
311
312 f = getface(op);
313 if (f->area == 0.)
314 return(0.);
315 for (i = 0; i < 3; i++) {
316 ocent[i] = 0.;
317 for (j = 0; j < f->nv; j++)
318 ocent[i] += VERTEX(f,j)[i];
319 ocent[i] /= (double)f->nv;
320 }
321 d = DOT(ocent,f->norm);
322 for (i = 0; i < 3; i++)
323 ocent[i] += (f->offset - d)*f->norm[i];
324 maxrad2 = 0.;
325 for (j = 0; j < f->nv; j++) {
326 d = dist2(VERTEX(f,j), ocent);
327 if (d > maxrad2)
328 maxrad2 = d;
329 }
330 return(maxrad2);
331 }
332
333
334 double
335 rgetmaxdisk( /* get center and squared radius of ring */
336 FVECT ocent,
337 OBJREC *op
338 )
339 {
340 CONE *co;
341
342 co = getcone(op, 0);
343 if (co == NULL)
344 return(0.);
345 VCOPY(ocent, CO_P0(co));
346 return(CO_R1(co)*CO_R1(co));
347 }
348
349
350 double
351 fgetplaneq( /* get plane equation for face */
352 FVECT nvec,
353 OBJREC *op
354 )
355 {
356 FACE *fo;
357
358 fo = getface(op);
359 VCOPY(nvec, fo->norm);
360 return(fo->offset);
361 }
362
363
364 double
365 rgetplaneq( /* get plane equation for ring */
366 FVECT nvec,
367 OBJREC *op
368 )
369 {
370 CONE *co;
371
372 co = getcone(op, 0);
373 if (co == NULL) {
374 memset(nvec, 0, sizeof(FVECT));
375 return(0.);
376 }
377 VCOPY(nvec, co->ad);
378 return(DOT(nvec, CO_P0(co)));
379 }
380
381
382 int
383 commonspot( /* set sp1 to intersection of sp1 and sp2 */
384 SPOT *sp1,
385 SPOT *sp2,
386 FVECT org
387 )
388 {
389 FVECT cent;
390 double rad2, cos1, cos2;
391
392 cos1 = 1. - sp1->siz/(2.*PI);
393 cos2 = 1. - sp2->siz/(2.*PI);
394 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
395 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
396 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
397 /* compute and check disks */
398 rad2 = intercircle(cent, sp1->aim, sp2->aim,
399 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
400 if (rad2 <= FTINY || normalize(cent) == 0.)
401 return(0);
402 VCOPY(sp1->aim, cent);
403 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
404 return(1);
405 }
406
407
408 int
409 commonbeam( /* set sp1 to intersection of sp1 and sp2 */
410 SPOT *sp1,
411 SPOT *sp2,
412 FVECT dir
413 )
414 {
415 FVECT cent, c1, c2;
416 double rad2, d;
417 /* move centers to common plane */
418 d = DOT(sp1->aim, dir);
419 VSUM(c1, sp1->aim, dir, -d);
420 d = DOT(sp2->aim, dir);
421 VSUM(c2, sp2->aim, dir, -d);
422 /* compute overlap */
423 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
424 if (rad2 <= FTINY)
425 return(0);
426 VCOPY(sp1->aim, cent);
427 sp1->siz = PI*rad2;
428 return(1);
429 }
430
431
432 int
433 checkspot( /* check spotlight for behind source */
434 SPOT *sp, /* spotlight */
435 FVECT nrm /* source surface normal */
436 )
437 {
438 double d, d1;
439
440 d = DOT(sp->aim, nrm);
441 if (d > FTINY) /* center in front? */
442 return(1);
443 /* else check horizon */
444 d1 = 1. - sp->siz/(2.*PI);
445 return(1.-FTINY-d*d < d1*d1);
446 }
447
448
449 double
450 spotdisk( /* intersect spot with object op */
451 FVECT oc,
452 OBJREC *op,
453 SPOT *sp,
454 FVECT pos
455 )
456 {
457 FVECT onorm;
458 double offs, d, dist;
459
460 offs = getplaneq(onorm, op);
461 d = -DOT(onorm, sp->aim);
462 if (d >= -FTINY && d <= FTINY)
463 return(0.);
464 dist = (DOT(pos, onorm) - offs)/d;
465 if (dist < 0.)
466 return(0.);
467 VSUM(oc, pos, sp->aim, dist);
468 return(sp->siz*dist*dist/PI/(d*d));
469 }
470
471
472 double
473 beamdisk( /* intersect beam with object op */
474 FVECT oc,
475 OBJREC *op,
476 SPOT *sp,
477 FVECT dir
478 )
479 {
480 FVECT onorm;
481 double offs, d, dist;
482
483 offs = getplaneq(onorm, op);
484 d = -DOT(onorm, dir);
485 if (d >= -FTINY && d <= FTINY)
486 return(0.);
487 dist = (DOT(sp->aim, onorm) - offs)/d;
488 VSUM(oc, sp->aim, dir, dist);
489 return(sp->siz/PI/(d*d));
490 }
491
492
493 double
494 intercircle( /* intersect two circles */
495 FVECT cc, /* midpoint (return value) */
496 FVECT c1, /* circle centers */
497 FVECT c2,
498 double r1s, /* radii squared */
499 double r2s
500 )
501 {
502 double a2, d2, l;
503 FVECT disp;
504
505 VSUB(disp, c2, c1);
506 d2 = DOT(disp,disp);
507 /* circle within overlap? */
508 if (r1s < r2s) {
509 if (r2s >= r1s + d2) {
510 VCOPY(cc, c1);
511 return(r1s);
512 }
513 } else {
514 if (r1s >= r2s + d2) {
515 VCOPY(cc, c2);
516 return(r2s);
517 }
518 }
519 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
520 /* no overlap? */
521 if (a2 <= 0.)
522 return(0.);
523 /* overlap, compute center */
524 l = sqrt((r1s - a2)/d2);
525 VSUM(cc, c1, disp, l);
526 return(a2);
527 }