ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.22
Committed: Thu May 21 05:54:54 2015 UTC (8 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R0
Changes since 2.21: +3 -3 lines
Log Message:
Made axis randomization optional in getperpendicular()

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsupp.c,v 2.21 2014/12/04 05:26:28 greg Exp $";
3 #endif
4 /*
5 * Support routines for source objects and materials
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "otypes.h"
15
16 #include "source.h"
17
18 #include "cone.h"
19
20 #include "face.h"
21
22 #define SRCINC 32 /* realloc increment for array */
23
24 SRCREC *source = NULL; /* our list of sources */
25 int nsources = 0; /* the number of sources */
26
27 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28
29
30 void
31 initstypes(void) /* initialize source dispatch table */
32 {
33 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35 static SOBJECT ssobj = {ssetsrc, nopart};
36 static SOBJECT sphsobj = {sphsetsrc, nopart};
37 static SOBJECT cylsobj = {cylsetsrc, cylpart};
38 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39
40 sfun[MAT_MIRROR].mf = &mirror_vs;
41 sfun[MAT_DIRECT1].mf = &direct1_vs;
42 sfun[MAT_DIRECT2].mf = &direct2_vs;
43 sfun[OBJ_FACE].of = &fsobj;
44 sfun[OBJ_SOURCE].of = &ssobj;
45 sfun[OBJ_SPHERE].of = &sphsobj;
46 sfun[OBJ_CYLINDER].of = &cylsobj;
47 sfun[OBJ_RING].of = &rsobj;
48 }
49
50
51 int
52 newsource(void) /* allocate new source in our array */
53 {
54 if (nsources == 0)
55 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56 else if (nsources%SRCINC == 0)
57 source = (SRCREC *)realloc((void *)source,
58 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 if (source == NULL)
60 return(-1);
61 source[nsources].sflags = 0;
62 source[nsources].nhits = 1;
63 source[nsources].ntests = 2; /* initial hit probability = 50% */
64 #if SHADCACHE
65 source[nsources].obscache = NULL;
66 #endif
67 return(nsources++);
68 }
69
70
71 void
72 setflatss( /* set sampling for a flat source */
73 SRCREC *src
74 )
75 {
76 double mult;
77 int i;
78
79 getperpendicular(src->ss[SU], src->snorm, rand_samp);
80 mult = .5 * sqrt( src->ss2 );
81 for (i = 0; i < 3; i++)
82 src->ss[SU][i] *= mult;
83 fcross(src->ss[SV], src->snorm, src->ss[SU]);
84 }
85
86
87 void
88 fsetsrc( /* set a face as a source */
89 SRCREC *src,
90 OBJREC *so
91 )
92 {
93 FACE *f;
94 int i, j;
95 double d;
96
97 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98 src->so = so;
99 /* get the face */
100 f = getface(so);
101 if (f->area == 0.0)
102 objerror(so, USER, "zero source area");
103 /* find the center */
104 for (j = 0; j < 3; j++) {
105 src->sloc[j] = 0.0;
106 for (i = 0; i < f->nv; i++)
107 src->sloc[j] += VERTEX(f,i)[j];
108 src->sloc[j] /= (double)f->nv;
109 }
110 if (!inface(src->sloc, f))
111 objerror(so, USER, "cannot hit source center");
112 src->sflags |= SFLAT;
113 VCOPY(src->snorm, f->norm);
114 src->ss2 = f->area;
115 /* find maximum radius */
116 src->srad = 0.;
117 for (i = 0; i < f->nv; i++) {
118 d = dist2(VERTEX(f,i), src->sloc);
119 if (d > src->srad)
120 src->srad = d;
121 }
122 src->srad = sqrt(src->srad);
123 /* compute size vectors */
124 if (f->nv == 4) /* parallelogram case */
125 for (j = 0; j < 3; j++) {
126 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
127 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
128 }
129 else
130 setflatss(src);
131 }
132
133
134 void
135 ssetsrc( /* set a source as a source */
136 SRCREC *src,
137 OBJREC *so
138 )
139 {
140 double theta;
141
142 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
143 src->so = so;
144 if (so->oargs.nfargs != 4)
145 objerror(so, USER, "bad arguments");
146 src->sflags |= (SDISTANT|SCIR);
147 VCOPY(src->sloc, so->oargs.farg);
148 if (normalize(src->sloc) == 0.0)
149 objerror(so, USER, "zero direction");
150 theta = PI/180.0/2.0 * so->oargs.farg[3];
151 if (theta <= FTINY)
152 objerror(so, USER, "zero size");
153 src->ss2 = 2.0*PI * (1.0 - cos(theta));
154 /* the following is approximate */
155 src->srad = sqrt(src->ss2/PI);
156 VCOPY(src->snorm, src->sloc);
157 setflatss(src); /* hey, whatever works */
158 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
159 }
160
161
162 void
163 sphsetsrc( /* set a sphere as a source */
164 SRCREC *src,
165 OBJREC *so
166 )
167 {
168 int i;
169
170 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
171 src->so = so;
172 if (so->oargs.nfargs != 4)
173 objerror(so, USER, "bad # arguments");
174 if (so->oargs.farg[3] <= FTINY)
175 objerror(so, USER, "illegal source radius");
176 src->sflags |= SCIR;
177 VCOPY(src->sloc, so->oargs.farg);
178 src->srad = so->oargs.farg[3];
179 src->ss2 = PI * src->srad * src->srad;
180 for (i = 0; i < 3; i++)
181 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
182 for (i = 0; i < 3; i++)
183 src->ss[i][i] = 0.7236 * so->oargs.farg[3];
184 }
185
186
187 void
188 rsetsrc( /* set a ring (disk) as a source */
189 SRCREC *src,
190 OBJREC *so
191 )
192 {
193 CONE *co;
194
195 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
196 src->so = so;
197 /* get the ring */
198 co = getcone(so, 0);
199 if (CO_R1(co) <= FTINY)
200 objerror(so, USER, "illegal source radius");
201 VCOPY(src->sloc, CO_P0(co));
202 if (CO_R0(co) > 0.0)
203 objerror(so, USER, "cannot hit source center");
204 src->sflags |= (SFLAT|SCIR);
205 VCOPY(src->snorm, co->ad);
206 src->srad = CO_R1(co);
207 src->ss2 = PI * src->srad * src->srad;
208 setflatss(src);
209 }
210
211
212 void
213 cylsetsrc( /* set a cylinder as a source */
214 SRCREC *src,
215 OBJREC *so
216 )
217 {
218 CONE *co;
219 int i;
220
221 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
222 src->so = so;
223 /* get the cylinder */
224 co = getcone(so, 0);
225 if (CO_R0(co) <= FTINY)
226 objerror(so, USER, "illegal source radius");
227 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
228 objerror(so, WARNING, "source aspect too small");
229 src->sflags |= SCYL;
230 for (i = 0; i < 3; i++)
231 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
232 src->srad = .5*co->al;
233 src->ss2 = 2.*CO_R0(co)*co->al;
234 /* set sampling vectors */
235 for (i = 0; i < 3; i++)
236 src->ss[SU][i] = .5 * co->al * co->ad[i];
237 getperpendicular(src->ss[SW], co->ad, rand_samp);
238 for (i = 0; i < 3; i++)
239 src->ss[SW][i] *= .8559 * CO_R0(co);
240 fcross(src->ss[SV], src->ss[SW], co->ad);
241 }
242
243
244 SPOT *
245 makespot( /* make a spotlight */
246 OBJREC *m
247 )
248 {
249 SPOT *ns;
250
251 if ((ns = (SPOT *)m->os) != NULL)
252 return(ns);
253 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
254 return(NULL);
255 if (m->oargs.farg[3] <= FTINY)
256 objerror(m, USER, "zero angle");
257 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
258 VCOPY(ns->aim, m->oargs.farg+4);
259 if ((ns->flen = normalize(ns->aim)) == 0.0)
260 objerror(m, USER, "zero focus vector");
261 m->os = (char *)ns;
262 return(ns);
263 }
264
265
266 int
267 spotout( /* check if we're outside spot region */
268 RAY *r,
269 SPOT *s
270 )
271 {
272 double d;
273 FVECT vd;
274
275 if (s == NULL)
276 return(0);
277 if (s->flen < -FTINY) { /* distant source */
278 vd[0] = s->aim[0] - r->rorg[0];
279 vd[1] = s->aim[1] - r->rorg[1];
280 vd[2] = s->aim[2] - r->rorg[2];
281 d = DOT(r->rdir,vd);
282 /* wrong side?
283 if (d <= FTINY)
284 return(1); */
285 d = DOT(vd,vd) - d*d;
286 if (PI*d > s->siz)
287 return(1); /* out */
288 return(0); /* OK */
289 }
290 /* local source */
291 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
292 return(1); /* out */
293 return(0); /* OK */
294 }
295
296
297 double
298 fgetmaxdisk( /* get center and squared radius of face */
299 FVECT ocent,
300 OBJREC *op
301 )
302 {
303 double maxrad2;
304 double d;
305 int i, j;
306 FACE *f;
307
308 f = getface(op);
309 if (f->area == 0.)
310 return(0.);
311 for (i = 0; i < 3; i++) {
312 ocent[i] = 0.;
313 for (j = 0; j < f->nv; j++)
314 ocent[i] += VERTEX(f,j)[i];
315 ocent[i] /= (double)f->nv;
316 }
317 d = DOT(ocent,f->norm);
318 for (i = 0; i < 3; i++)
319 ocent[i] += (f->offset - d)*f->norm[i];
320 maxrad2 = 0.;
321 for (j = 0; j < f->nv; j++) {
322 d = dist2(VERTEX(f,j), ocent);
323 if (d > maxrad2)
324 maxrad2 = d;
325 }
326 return(maxrad2);
327 }
328
329
330 double
331 rgetmaxdisk( /* get center and squared radius of ring */
332 FVECT ocent,
333 OBJREC *op
334 )
335 {
336 CONE *co;
337
338 co = getcone(op, 0);
339 VCOPY(ocent, CO_P0(co));
340 return(CO_R1(co)*CO_R1(co));
341 }
342
343
344 double
345 fgetplaneq( /* get plane equation for face */
346 FVECT nvec,
347 OBJREC *op
348 )
349 {
350 FACE *fo;
351
352 fo = getface(op);
353 VCOPY(nvec, fo->norm);
354 return(fo->offset);
355 }
356
357
358 double
359 rgetplaneq( /* get plane equation for ring */
360 FVECT nvec,
361 OBJREC *op
362 )
363 {
364 CONE *co;
365
366 co = getcone(op, 0);
367 VCOPY(nvec, co->ad);
368 return(DOT(nvec, CO_P0(co)));
369 }
370
371
372 int
373 commonspot( /* set sp1 to intersection of sp1 and sp2 */
374 SPOT *sp1,
375 SPOT *sp2,
376 FVECT org
377 )
378 {
379 FVECT cent;
380 double rad2, cos1, cos2;
381
382 cos1 = 1. - sp1->siz/(2.*PI);
383 cos2 = 1. - sp2->siz/(2.*PI);
384 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
385 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
386 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
387 /* compute and check disks */
388 rad2 = intercircle(cent, sp1->aim, sp2->aim,
389 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
390 if (rad2 <= FTINY || normalize(cent) == 0.)
391 return(0);
392 VCOPY(sp1->aim, cent);
393 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
394 return(1);
395 }
396
397
398 int
399 commonbeam( /* set sp1 to intersection of sp1 and sp2 */
400 SPOT *sp1,
401 SPOT *sp2,
402 FVECT dir
403 )
404 {
405 FVECT cent, c1, c2;
406 double rad2, d;
407 /* move centers to common plane */
408 d = DOT(sp1->aim, dir);
409 VSUM(c1, sp1->aim, dir, -d);
410 d = DOT(sp2->aim, dir);
411 VSUM(c2, sp2->aim, dir, -d);
412 /* compute overlap */
413 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
414 if (rad2 <= FTINY)
415 return(0);
416 VCOPY(sp1->aim, cent);
417 sp1->siz = PI*rad2;
418 return(1);
419 }
420
421
422 int
423 checkspot( /* check spotlight for behind source */
424 SPOT *sp, /* spotlight */
425 FVECT nrm /* source surface normal */
426 )
427 {
428 double d, d1;
429
430 d = DOT(sp->aim, nrm);
431 if (d > FTINY) /* center in front? */
432 return(1);
433 /* else check horizon */
434 d1 = 1. - sp->siz/(2.*PI);
435 return(1.-FTINY-d*d < d1*d1);
436 }
437
438
439 double
440 spotdisk( /* intersect spot with object op */
441 FVECT oc,
442 OBJREC *op,
443 SPOT *sp,
444 FVECT pos
445 )
446 {
447 FVECT onorm;
448 double offs, d, dist;
449
450 offs = getplaneq(onorm, op);
451 d = -DOT(onorm, sp->aim);
452 if (d >= -FTINY && d <= FTINY)
453 return(0.);
454 dist = (DOT(pos, onorm) - offs)/d;
455 if (dist < 0.)
456 return(0.);
457 VSUM(oc, pos, sp->aim, dist);
458 return(sp->siz*dist*dist/PI/(d*d));
459 }
460
461
462 double
463 beamdisk( /* intersect beam with object op */
464 FVECT oc,
465 OBJREC *op,
466 SPOT *sp,
467 FVECT dir
468 )
469 {
470 FVECT onorm;
471 double offs, d, dist;
472
473 offs = getplaneq(onorm, op);
474 d = -DOT(onorm, dir);
475 if (d >= -FTINY && d <= FTINY)
476 return(0.);
477 dist = (DOT(sp->aim, onorm) - offs)/d;
478 VSUM(oc, sp->aim, dir, dist);
479 return(sp->siz/PI/(d*d));
480 }
481
482
483 double
484 intercircle( /* intersect two circles */
485 FVECT cc, /* midpoint (return value) */
486 FVECT c1, /* circle centers */
487 FVECT c2,
488 double r1s, /* radii squared */
489 double r2s
490 )
491 {
492 double a2, d2, l;
493 FVECT disp;
494
495 VSUB(disp, c2, c1);
496 d2 = DOT(disp,disp);
497 /* circle within overlap? */
498 if (r1s < r2s) {
499 if (r2s >= r1s + d2) {
500 VCOPY(cc, c1);
501 return(r1s);
502 }
503 } else {
504 if (r1s >= r2s + d2) {
505 VCOPY(cc, c2);
506 return(r2s);
507 }
508 }
509 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
510 /* no overlap? */
511 if (a2 <= 0.)
512 return(0.);
513 /* overlap, compute center */
514 l = sqrt((r1s - a2)/d2);
515 VSUM(cc, c1, disp, l);
516 return(a2);
517 }