/* Copyright (c) 1992 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Support routines for source objects and materials */ #include "ray.h" #include "otypes.h" #include "source.h" #include "cone.h" #include "face.h" #define SRCINC 4 /* realloc increment for array */ SRCREC *source = NULL; /* our list of sources */ int nsources = 0; /* the number of sources */ SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */ initstypes() /* initialize source dispatch table */ { extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs; extern int fsetsrc(), ssetsrc(), sphsetsrc(), cylsetsrc(), rsetsrc(); extern int nopart(), flatpart(), cylpart(); extern double fgetplaneq(), rgetplaneq(); extern double fgetmaxdisk(), rgetmaxdisk(); static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk}; static SOBJECT ssobj = {ssetsrc, nopart}; static SOBJECT sphsobj = {sphsetsrc, nopart}; static SOBJECT cylsobj = {cylsetsrc, cylpart}; static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk}; sfun[MAT_MIRROR].mf = &mirror_vs; sfun[MAT_DIRECT1].mf = &direct1_vs; sfun[MAT_DIRECT2].mf = &direct2_vs; sfun[OBJ_FACE].of = &fsobj; sfun[OBJ_SOURCE].of = &ssobj; sfun[OBJ_SPHERE].of = &sphsobj; sfun[OBJ_CYLINDER].of = &cylsobj; sfun[OBJ_RING].of = &rsobj; } int newsource() /* allocate new source in our array */ { if (nsources == 0) source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC)); else if (nsources%SRCINC == 0) source = (SRCREC *)realloc((char *)source, (unsigned)(nsources+SRCINC)*sizeof(SRCREC)); if (source == NULL) return(-1); source[nsources].sflags = 0; source[nsources].nhits = 1; source[nsources].ntests = 2; /* initial hit probability = 1/2 */ return(nsources++); } setflatss(src) /* set sampling for a flat source */ register SRCREC *src; { double mult; register int i; src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0; for (i = 0; i < 3; i++) if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6) break; src->ss[SV][i] = 1.0; fcross(src->ss[SU], src->ss[SV], src->snorm); mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) ); for (i = 0; i < 3; i++) src->ss[SU][i] *= mult; fcross(src->ss[SV], src->snorm, src->ss[SU]); } fsetsrc(src, so) /* set a face as a source */ register SRCREC *src; OBJREC *so; { register FACE *f; register int i, j; double d; src->sa.success = 2*AIMREQT-1; /* bitch on second failure */ src->so = so; /* get the face */ f = getface(so); /* find the center */ for (j = 0; j < 3; j++) { src->sloc[j] = 0.0; for (i = 0; i < f->nv; i++) src->sloc[j] += VERTEX(f,i)[j]; src->sloc[j] /= (double)f->nv; } if (!inface(src->sloc, f)) objerror(so, USER, "cannot hit center"); src->sflags |= SFLAT; VCOPY(src->snorm, f->norm); src->ss2 = f->area; /* find maximum radius */ src->srad = 0.; for (i = 0; i < f->nv; i++) { d = dist2(VERTEX(f,i), src->sloc); if (d > src->srad) src->srad = d; } src->srad = sqrt(src->srad); /* compute size vectors */ if (f->nv == 4 || (f->nv == 5 && /* parallelogram case */ dist2(VERTEX(f,0),VERTEX(f,4)) <= FTINY*FTINY)) for (j = 0; j < 3; j++) { src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]); src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]); } else setflatss(src); } ssetsrc(src, so) /* set a source as a source */ register SRCREC *src; register OBJREC *so; { double theta; src->sa.success = 2*AIMREQT-1; /* bitch on second failure */ src->so = so; if (so->oargs.nfargs != 4) objerror(so, USER, "bad arguments"); src->sflags |= SDISTANT; VCOPY(src->sloc, so->oargs.farg); if (normalize(src->sloc) == 0.0) objerror(so, USER, "zero direction"); theta = PI/180.0/2.0 * so->oargs.farg[3]; if (theta <= FTINY) objerror(so, USER, "zero size"); src->ss2 = 2.0*PI * (1.0 - cos(theta)); /* the following is approximate */ src->srad = sqrt(src->ss2/PI); VCOPY(src->snorm, src->sloc); setflatss(src); /* hey, whatever works */ src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0; } sphsetsrc(src, so) /* set a sphere as a source */ register SRCREC *src; register OBJREC *so; { register int i; src->sa.success = 2*AIMREQT-1; /* bitch on second failure */ src->so = so; if (so->oargs.nfargs != 4) objerror(so, USER, "bad # arguments"); if (so->oargs.farg[3] <= FTINY) objerror(so, USER, "illegal radius"); VCOPY(src->sloc, so->oargs.farg); src->srad = so->oargs.farg[3]; src->ss2 = PI * src->srad * src->srad; for (i = 0; i < 3; i++) src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0; for (i = 0; i < 3; i++) src->ss[i][i] = .7236 * so->oargs.farg[3]; } rsetsrc(src, so) /* set a ring (disk) as a source */ register SRCREC *src; OBJREC *so; { register CONE *co; src->sa.success = 2*AIMREQT-1; /* bitch on second failure */ src->so = so; /* get the ring */ co = getcone(so, 0); VCOPY(src->sloc, CO_P0(co)); if (CO_R0(co) > 0.0) objerror(so, USER, "cannot hit center"); src->sflags |= SFLAT; VCOPY(src->snorm, co->ad); src->srad = CO_R1(co); src->ss2 = PI * src->srad * src->srad; setflatss(src); } cylsetsrc(src, so) /* set a cylinder as a source */ register SRCREC *src; OBJREC *so; { register CONE *co; register int i; src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */ src->so = so; /* get the cylinder */ co = getcone(so, 0); if (CO_R0(co) > .2*co->al) /* heuristic constraint */ objerror(so, WARNING, "source aspect too small"); src->sflags |= SCYL; for (i = 0; i < 3; i++) src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]); src->srad = .5*co->al; src->ss2 = 2.*CO_R0(co)*co->al; /* set sampling vectors */ for (i = 0; i < 3; i++) src->ss[SU][i] = .5 * co->al * co->ad[i]; src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0; for (i = 0; i < 3; i++) if (co->ad[i] < 0.6 && co->ad[i] > -0.6) break; src->ss[SV][i] = 1.0; fcross(src->ss[SW], src->ss[SV], co->ad); normalize(src->ss[SW]); for (i = 0; i < 3; i++) src->ss[SW][i] *= .8559 * CO_R0(co); fcross(src->ss[SV], src->ss[SW], co->ad); } SPOT * makespot(m) /* make a spotlight */ register OBJREC *m; { register SPOT *ns; if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL) return(NULL); ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3])); VCOPY(ns->aim, m->oargs.farg+4); if ((ns->flen = normalize(ns->aim)) == 0.0) objerror(m, USER, "zero focus vector"); return(ns); } double fgetmaxdisk(ocent, op) /* get center and squared radius of face */ FVECT ocent; OBJREC *op; { double maxrad2; double d; register int i, j; register FACE *f; f = getface(op); if (f->area == 0.) return(0.); for (i = 0; i < 3; i++) { ocent[i] = 0.; for (j = 0; j < f->nv; j++) ocent[i] += VERTEX(f,j)[i]; ocent[i] /= (double)f->nv; } d = DOT(ocent,f->norm); for (i = 0; i < 3; i++) ocent[i] += (f->offset - d)*f->norm[i]; maxrad2 = 0.; for (j = 0; j < f->nv; j++) { d = dist2(VERTEX(f,j), ocent); if (d > maxrad2) maxrad2 = d; } return(maxrad2); } double rgetmaxdisk(ocent, op) /* get center and squared radius of ring */ FVECT ocent; OBJREC *op; { register CONE *co; co = getcone(op, 0); VCOPY(ocent, CO_P0(co)); return(CO_R1(co)*CO_R1(co)); } double fgetplaneq(nvec, op) /* get plane equation for face */ FVECT nvec; OBJREC *op; { register FACE *fo; fo = getface(op); VCOPY(nvec, fo->norm); return(fo->offset); } double rgetplaneq(nvec, op) /* get plane equation for ring */ FVECT nvec; OBJREC *op; { register CONE *co; co = getcone(op, 0); VCOPY(nvec, co->ad); return(DOT(nvec, CO_P0(co))); } commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */ register SPOT *sp1, *sp2; FVECT org; { FVECT cent; double rad2, cos1, cos2; cos1 = 1. - sp1->siz/(2.*PI); cos2 = 1. - sp2->siz/(2.*PI); if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */ return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 - sqrt((1.-cos1*cos1)*(1.-cos2*cos2))); /* compute and check disks */ rad2 = intercircle(cent, sp1->aim, sp2->aim, 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.); if (rad2 <= FTINY || normalize(cent) == 0.) return(0); VCOPY(sp1->aim, cent); sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2)); return(1); } commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */ register SPOT *sp1, *sp2; FVECT dir; { FVECT cent, c1, c2; double rad2, d; register int i; /* move centers to common plane */ d = DOT(sp1->aim, dir); for (i = 0; i < 3; i++) c1[i] = sp1->aim[i] - d*dir[i]; d = DOT(sp2->aim, dir); for (i = 0; i < 3; i++) c2[i] = sp2->aim[i] - d*dir[i]; /* compute overlap */ rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI); if (rad2 <= FTINY) return(0); VCOPY(sp1->aim, cent); sp1->siz = PI*rad2; return(1); } checkspot(sp, nrm) /* check spotlight for behind source */ register SPOT *sp; /* spotlight */ FVECT nrm; /* source surface normal */ { double d, d1; d = DOT(sp->aim, nrm); if (d > FTINY) /* center in front? */ return(1); /* else check horizon */ d1 = 1. - sp->siz/(2.*PI); return(1.-FTINY-d*d < d1*d1); } double spotdisk(oc, op, sp, pos) /* intersect spot with object op */ FVECT oc; OBJREC *op; register SPOT *sp; FVECT pos; { FVECT onorm; double offs, d, dist; register int i; offs = getplaneq(onorm, op); d = -DOT(onorm, sp->aim); if (d >= -FTINY && d <= FTINY) return(0.); dist = (DOT(pos, onorm) - offs)/d; if (dist < 0.) return(0.); for (i = 0; i < 3; i++) oc[i] = pos[i] + dist*sp->aim[i]; return(sp->siz*dist*dist/PI/(d*d)); } double beamdisk(oc, op, sp, dir) /* intersect beam with object op */ FVECT oc; OBJREC *op; register SPOT *sp; FVECT dir; { FVECT onorm; double offs, d, dist; register int i; offs = getplaneq(onorm, op); d = -DOT(onorm, dir); if (d >= -FTINY && d <= FTINY) return(0.); dist = (DOT(sp->aim, onorm) - offs)/d; for (i = 0; i < 3; i++) oc[i] = sp->aim[i] + dist*dir[i]; return(sp->siz/PI/(d*d)); } double intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */ FVECT cc; /* midpoint (return value) */ FVECT c1, c2; /* circle centers */ double r1s, r2s; /* radii squared */ { double a2, d2, l; FVECT disp; register int i; for (i = 0; i < 3; i++) disp[i] = c2[i] - c1[i]; d2 = DOT(disp,disp); /* circle within overlap? */ if (r1s < r2s) { if (r2s >= r1s + d2) { VCOPY(cc, c1); return(r1s); } } else { if (r1s >= r2s + d2) { VCOPY(cc, c2); return(r2s); } } a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2); /* no overlap? */ if (a2 <= 0.) return(0.); /* overlap, compute center */ l = sqrt((r1s - a2)/d2); for (i = 0; i < 3; i++) cc[i] = c1[i] + l*disp[i]; return(a2); } sourcehit(r) /* check to see if ray hit distant source */ register RAY *r; { int first, last; register int i; if (r->rsrc >= 0) { /* check only one if aimed */ first = last = r->rsrc; } else { /* otherwise check all */ first = 0; last = nsources-1; } for (i = first; i <= last; i++) if ((source[i].sflags & (SDISTANT|SVIRTUAL)) == SDISTANT) /* * Check to see if ray is within * solid angle of source. */ if (2.0*PI * (1.0 - DOT(source[i].sloc,r->rdir)) <= source[i].ss2) { r->ro = source[i].so; if (!(source[i].sflags & SSKIP)) break; } if (r->ro != NULL) { for (i = 0; i < 3; i++) r->ron[i] = -r->rdir[i]; r->rod = 1.0; r->rox = NULL; return(1); } return(0); } /**************************************************************** * The following macros were separated from the m_light() routine * because they are very nasty and difficult to understand. */ /* wrongillum * * * We cannot allow an illum to pass to another illum, because that * would almost certainly constitute overcounting. * However, we do allow an illum to pass to another illum * that is actually going to relay to a virtual light source. */ #define wrongillum(m, r) (!(source[r->rsrc].sflags&SVIRTUAL) && \ objptr(source[r->rsrc].so->omod)->otype==MAT_ILLUM) /* wrongsource * * * This source is the wrong source (ie. overcounted) if we are * aimed to a different source than the one we hit and the one * we hit is not an illum which should be passed. */ #define wrongsource(m, r) (r->rsrc>=0 && source[r->rsrc].so!=r->ro && \ (m->otype!=MAT_ILLUM || wrongillum(m,r))) /* badspecular * * * Any undirected specular ray that hits a light source * should be discarded. This is because the source contribution to * specular components is calculated separately to reduce variance. */ #define badspecular(m, r) (r->rsrc<0 && r->crtype&SPECULAR) /* distglow * * * A distant glow is an object that sometimes acts as a light source, * but is too far away from the test point to be one in this case. */ #define distglow(m, r) (m->otype==MAT_GLOW && \ r->rot > m->oargs.farg[3]) /* badambient * * * We must avoid including counting light sources in the ambient calculation, * since the direct component is handled separately. Therefore, any * ambient ray which hits an active light source must be discarded. */ #define badambient(m, r) ((r->crtype&(AMBIENT|SHADOW))==AMBIENT && \ !distglow(m, r)) /* overcount * * * All overcounting possibilities are contained here. */ #define overcount(m, r) (badspecular(m,r) || wrongsource(m,r) || \ badambient(m,r)) /* passillum * * * An illum passes to another material type when we didn't hit it * on purpose (as part of a direct calculation), or it is relaying * a virtual light source. */ #define passillum(m, r) (m->otype==MAT_ILLUM && \ (r->rsrc<0 || source[r->rsrc].so!=r->ro || \ source[r->rsrc].sflags&SVIRTUAL)) /* srcignore * * * The -di flag renders light sources invisible, and here is the test. */ #define srcignore(m, r) (directinvis && !(r->crtype&SHADOW) && \ !distglow(m, r)) m_light(m, r) /* ray hit a light source */ register OBJREC *m; register RAY *r; { /* check for over-counting */ if (overcount(m, r)) return; /* check for passed illum */ if (passillum(m, r)) { if (m->oargs.nsargs < 1 || !strcmp(m->oargs.sarg[0], VOIDID)) raytrans(r); else rayshade(r, modifier(m->oargs.sarg[0])); return; } /* otherwise treat as source */ /* check for behind */ if (r->rod < 0.0) return; /* check for invisibility */ if (srcignore(m, r)) return; /* get distribution pattern */ raytexture(r, m->omod); /* get source color */ setcolor(r->rcol, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]); /* modify value */ multcolor(r->rcol, r->pcol); }