ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.17
Committed: Sat Dec 6 01:08:53 2008 UTC (15 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R0
Changes since 2.16: +5 -4 lines
Log Message:
Reduced occurrence of aiming failures for circular sources (Thanks to David G-M)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsupp.c,v 2.16 2007/02/26 21:16:02 greg Exp $";
3 #endif
4 /*
5 * Support routines for source objects and materials
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "otypes.h"
15
16 #include "source.h"
17
18 #include "cone.h"
19
20 #include "face.h"
21
22 #define SRCINC 8 /* realloc increment for array */
23
24 SRCREC *source = NULL; /* our list of sources */
25 int nsources = 0; /* the number of sources */
26
27 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28
29
30 void
31 initstypes() /* initialize source dispatch table */
32 {
33 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35 static SOBJECT ssobj = {ssetsrc, nopart};
36 static SOBJECT sphsobj = {sphsetsrc, nopart};
37 static SOBJECT cylsobj = {cylsetsrc, cylpart};
38 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39
40 sfun[MAT_MIRROR].mf = &mirror_vs;
41 sfun[MAT_DIRECT1].mf = &direct1_vs;
42 sfun[MAT_DIRECT2].mf = &direct2_vs;
43 sfun[OBJ_FACE].of = &fsobj;
44 sfun[OBJ_SOURCE].of = &ssobj;
45 sfun[OBJ_SPHERE].of = &sphsobj;
46 sfun[OBJ_CYLINDER].of = &cylsobj;
47 sfun[OBJ_RING].of = &rsobj;
48 }
49
50
51 int
52 newsource() /* allocate new source in our array */
53 {
54 if (nsources == 0)
55 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56 else if (nsources%SRCINC == 0)
57 source = (SRCREC *)realloc((void *)source,
58 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 if (source == NULL)
60 return(-1);
61 source[nsources].sflags = 0;
62 source[nsources].nhits = 1;
63 source[nsources].ntests = 2; /* initial hit probability = 50% */
64 #if SHADCACHE
65 source[nsources].obscache = NULL;
66 #endif
67 return(nsources++);
68 }
69
70
71 void
72 setflatss(src) /* set sampling for a flat source */
73 register SRCREC *src;
74 {
75 double mult;
76 register int i;
77
78 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
79 for (i = 0; i < 3; i++)
80 if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
81 break;
82 src->ss[SV][i] = 1.0;
83 fcross(src->ss[SU], src->ss[SV], src->snorm);
84 mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
85 for (i = 0; i < 3; i++)
86 src->ss[SU][i] *= mult;
87 fcross(src->ss[SV], src->snorm, src->ss[SU]);
88 }
89
90
91 void
92 fsetsrc(src, so) /* set a face as a source */
93 register SRCREC *src;
94 OBJREC *so;
95 {
96 register FACE *f;
97 register int i, j;
98 double d;
99
100 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
101 src->so = so;
102 /* get the face */
103 f = getface(so);
104 if (f->area == 0.0)
105 objerror(so, USER, "zero source area");
106 /* find the center */
107 for (j = 0; j < 3; j++) {
108 src->sloc[j] = 0.0;
109 for (i = 0; i < f->nv; i++)
110 src->sloc[j] += VERTEX(f,i)[j];
111 src->sloc[j] /= (double)f->nv;
112 }
113 if (!inface(src->sloc, f))
114 objerror(so, USER, "cannot hit source center");
115 src->sflags |= SFLAT;
116 VCOPY(src->snorm, f->norm);
117 src->ss2 = f->area;
118 /* find maximum radius */
119 src->srad = 0.;
120 for (i = 0; i < f->nv; i++) {
121 d = dist2(VERTEX(f,i), src->sloc);
122 if (d > src->srad)
123 src->srad = d;
124 }
125 src->srad = sqrt(src->srad);
126 /* compute size vectors */
127 if (f->nv == 4) /* parallelogram case */
128 for (j = 0; j < 3; j++) {
129 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
130 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
131 }
132 else
133 setflatss(src);
134 }
135
136
137 void
138 ssetsrc(src, so) /* set a source as a source */
139 register SRCREC *src;
140 register OBJREC *so;
141 {
142 double theta;
143
144 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
145 src->so = so;
146 if (so->oargs.nfargs != 4)
147 objerror(so, USER, "bad arguments");
148 src->sflags |= (SDISTANT|SCIR);
149 VCOPY(src->sloc, so->oargs.farg);
150 if (normalize(src->sloc) == 0.0)
151 objerror(so, USER, "zero direction");
152 theta = PI/180.0/2.0 * so->oargs.farg[3];
153 if (theta <= FTINY)
154 objerror(so, USER, "zero size");
155 src->ss2 = 2.0*PI * (1.0 - cos(theta));
156 /* the following is approximate */
157 src->srad = sqrt(src->ss2/PI);
158 VCOPY(src->snorm, src->sloc);
159 setflatss(src); /* hey, whatever works */
160 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
161 }
162
163
164 void
165 sphsetsrc(src, so) /* set a sphere as a source */
166 register SRCREC *src;
167 register OBJREC *so;
168 {
169 register int i;
170
171 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
172 src->so = so;
173 if (so->oargs.nfargs != 4)
174 objerror(so, USER, "bad # arguments");
175 if (so->oargs.farg[3] <= FTINY)
176 objerror(so, USER, "illegal source radius");
177 src->sflags |= SCIR;
178 VCOPY(src->sloc, so->oargs.farg);
179 src->srad = so->oargs.farg[3];
180 src->ss2 = PI * src->srad * src->srad;
181 for (i = 0; i < 3; i++)
182 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
183 for (i = 0; i < 3; i++)
184 src->ss[i][i] = 0.7236 * so->oargs.farg[3];
185 }
186
187
188 void
189 rsetsrc(src, so) /* set a ring (disk) as a source */
190 register SRCREC *src;
191 OBJREC *so;
192 {
193 register CONE *co;
194
195 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
196 src->so = so;
197 /* get the ring */
198 co = getcone(so, 0);
199 if (CO_R1(co) <= FTINY)
200 objerror(so, USER, "illegal source radius");
201 VCOPY(src->sloc, CO_P0(co));
202 if (CO_R0(co) > 0.0)
203 objerror(so, USER, "cannot hit source center");
204 src->sflags |= (SFLAT|SCIR);
205 VCOPY(src->snorm, co->ad);
206 src->srad = CO_R1(co);
207 src->ss2 = PI * src->srad * src->srad;
208 setflatss(src);
209 }
210
211
212 void
213 cylsetsrc(src, so) /* set a cylinder as a source */
214 register SRCREC *src;
215 OBJREC *so;
216 {
217 register CONE *co;
218 register int i;
219
220 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
221 src->so = so;
222 /* get the cylinder */
223 co = getcone(so, 0);
224 if (CO_R0(co) <= FTINY)
225 objerror(so, USER, "illegal source radius");
226 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
227 objerror(so, WARNING, "source aspect too small");
228 src->sflags |= SCYL;
229 for (i = 0; i < 3; i++)
230 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
231 src->srad = .5*co->al;
232 src->ss2 = 2.*CO_R0(co)*co->al;
233 /* set sampling vectors */
234 for (i = 0; i < 3; i++)
235 src->ss[SU][i] = .5 * co->al * co->ad[i];
236 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
237 for (i = 0; i < 3; i++)
238 if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
239 break;
240 src->ss[SV][i] = 1.0;
241 fcross(src->ss[SW], src->ss[SV], co->ad);
242 normalize(src->ss[SW]);
243 for (i = 0; i < 3; i++)
244 src->ss[SW][i] *= .8559 * CO_R0(co);
245 fcross(src->ss[SV], src->ss[SW], co->ad);
246 }
247
248
249 SPOT *
250 makespot(m) /* make a spotlight */
251 register OBJREC *m;
252 {
253 register SPOT *ns;
254
255 if ((ns = (SPOT *)m->os) != NULL)
256 return(ns);
257 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
258 return(NULL);
259 if (m->oargs.farg[3] <= FTINY)
260 objerror(m, USER, "zero angle");
261 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
262 VCOPY(ns->aim, m->oargs.farg+4);
263 if ((ns->flen = normalize(ns->aim)) == 0.0)
264 objerror(m, USER, "zero focus vector");
265 m->os = (char *)ns;
266 return(ns);
267 }
268
269
270 int
271 spotout(r, s) /* check if we're outside spot region */
272 register RAY *r;
273 register SPOT *s;
274 {
275 double d;
276 FVECT vd;
277
278 if (s == NULL)
279 return(0);
280 if (s->flen < -FTINY) { /* distant source */
281 vd[0] = s->aim[0] - r->rorg[0];
282 vd[1] = s->aim[1] - r->rorg[1];
283 vd[2] = s->aim[2] - r->rorg[2];
284 d = DOT(r->rdir,vd);
285 /* wrong side?
286 if (d <= FTINY)
287 return(1); */
288 d = DOT(vd,vd) - d*d;
289 if (PI*d > s->siz)
290 return(1); /* out */
291 return(0); /* OK */
292 }
293 /* local source */
294 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
295 return(1); /* out */
296 return(0); /* OK */
297 }
298
299
300 double
301 fgetmaxdisk(ocent, op) /* get center and squared radius of face */
302 FVECT ocent;
303 OBJREC *op;
304 {
305 double maxrad2;
306 double d;
307 register int i, j;
308 register FACE *f;
309
310 f = getface(op);
311 if (f->area == 0.)
312 return(0.);
313 for (i = 0; i < 3; i++) {
314 ocent[i] = 0.;
315 for (j = 0; j < f->nv; j++)
316 ocent[i] += VERTEX(f,j)[i];
317 ocent[i] /= (double)f->nv;
318 }
319 d = DOT(ocent,f->norm);
320 for (i = 0; i < 3; i++)
321 ocent[i] += (f->offset - d)*f->norm[i];
322 maxrad2 = 0.;
323 for (j = 0; j < f->nv; j++) {
324 d = dist2(VERTEX(f,j), ocent);
325 if (d > maxrad2)
326 maxrad2 = d;
327 }
328 return(maxrad2);
329 }
330
331
332 double
333 rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
334 FVECT ocent;
335 OBJREC *op;
336 {
337 register CONE *co;
338
339 co = getcone(op, 0);
340 VCOPY(ocent, CO_P0(co));
341 return(CO_R1(co)*CO_R1(co));
342 }
343
344
345 double
346 fgetplaneq(nvec, op) /* get plane equation for face */
347 FVECT nvec;
348 OBJREC *op;
349 {
350 register FACE *fo;
351
352 fo = getface(op);
353 VCOPY(nvec, fo->norm);
354 return(fo->offset);
355 }
356
357
358 double
359 rgetplaneq(nvec, op) /* get plane equation for ring */
360 FVECT nvec;
361 OBJREC *op;
362 {
363 register CONE *co;
364
365 co = getcone(op, 0);
366 VCOPY(nvec, co->ad);
367 return(DOT(nvec, CO_P0(co)));
368 }
369
370
371 int
372 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
373 register SPOT *sp1, *sp2;
374 FVECT org;
375 {
376 FVECT cent;
377 double rad2, cos1, cos2;
378
379 cos1 = 1. - sp1->siz/(2.*PI);
380 cos2 = 1. - sp2->siz/(2.*PI);
381 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
382 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
383 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
384 /* compute and check disks */
385 rad2 = intercircle(cent, sp1->aim, sp2->aim,
386 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
387 if (rad2 <= FTINY || normalize(cent) == 0.)
388 return(0);
389 VCOPY(sp1->aim, cent);
390 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
391 return(1);
392 }
393
394
395 int
396 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
397 register SPOT *sp1, *sp2;
398 FVECT dir;
399 {
400 FVECT cent, c1, c2;
401 double rad2, d;
402 register int i;
403 /* move centers to common plane */
404 d = DOT(sp1->aim, dir);
405 for (i = 0; i < 3; i++)
406 c1[i] = sp1->aim[i] - d*dir[i];
407 d = DOT(sp2->aim, dir);
408 for (i = 0; i < 3; i++)
409 c2[i] = sp2->aim[i] - d*dir[i];
410 /* compute overlap */
411 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
412 if (rad2 <= FTINY)
413 return(0);
414 VCOPY(sp1->aim, cent);
415 sp1->siz = PI*rad2;
416 return(1);
417 }
418
419
420 int
421 checkspot(sp, nrm) /* check spotlight for behind source */
422 register SPOT *sp; /* spotlight */
423 FVECT nrm; /* source surface normal */
424 {
425 double d, d1;
426
427 d = DOT(sp->aim, nrm);
428 if (d > FTINY) /* center in front? */
429 return(1);
430 /* else check horizon */
431 d1 = 1. - sp->siz/(2.*PI);
432 return(1.-FTINY-d*d < d1*d1);
433 }
434
435
436 double
437 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
438 FVECT oc;
439 OBJREC *op;
440 register SPOT *sp;
441 FVECT pos;
442 {
443 FVECT onorm;
444 double offs, d, dist;
445 register int i;
446
447 offs = getplaneq(onorm, op);
448 d = -DOT(onorm, sp->aim);
449 if (d >= -FTINY && d <= FTINY)
450 return(0.);
451 dist = (DOT(pos, onorm) - offs)/d;
452 if (dist < 0.)
453 return(0.);
454 for (i = 0; i < 3; i++)
455 oc[i] = pos[i] + dist*sp->aim[i];
456 return(sp->siz*dist*dist/PI/(d*d));
457 }
458
459
460 double
461 beamdisk(oc, op, sp, dir) /* intersect beam with object op */
462 FVECT oc;
463 OBJREC *op;
464 register SPOT *sp;
465 FVECT dir;
466 {
467 FVECT onorm;
468 double offs, d, dist;
469 register int i;
470
471 offs = getplaneq(onorm, op);
472 d = -DOT(onorm, dir);
473 if (d >= -FTINY && d <= FTINY)
474 return(0.);
475 dist = (DOT(sp->aim, onorm) - offs)/d;
476 for (i = 0; i < 3; i++)
477 oc[i] = sp->aim[i] + dist*dir[i];
478 return(sp->siz/PI/(d*d));
479 }
480
481
482 double
483 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
484 FVECT cc; /* midpoint (return value) */
485 FVECT c1, c2; /* circle centers */
486 double r1s, r2s; /* radii squared */
487 {
488 double a2, d2, l;
489 FVECT disp;
490 register int i;
491
492 for (i = 0; i < 3; i++)
493 disp[i] = c2[i] - c1[i];
494 d2 = DOT(disp,disp);
495 /* circle within overlap? */
496 if (r1s < r2s) {
497 if (r2s >= r1s + d2) {
498 VCOPY(cc, c1);
499 return(r1s);
500 }
501 } else {
502 if (r1s >= r2s + d2) {
503 VCOPY(cc, c2);
504 return(r2s);
505 }
506 }
507 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
508 /* no overlap? */
509 if (a2 <= 0.)
510 return(0.);
511 /* overlap, compute center */
512 l = sqrt((r1s - a2)/d2);
513 for (i = 0; i < 3; i++)
514 cc[i] = c1[i] + l*disp[i];
515 return(a2);
516 }