ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.16
Committed: Mon Feb 26 21:16:02 2007 UTC (17 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R9
Changes since 2.15: +12 -4 lines
Log Message:
Added checks for source surfaces, including zero-area polygons

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsupp.c,v 2.15 2005/10/16 16:04:10 greg Exp $";
3 #endif
4 /*
5 * Support routines for source objects and materials
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "otypes.h"
15
16 #include "source.h"
17
18 #include "cone.h"
19
20 #include "face.h"
21
22 #define SRCINC 8 /* realloc increment for array */
23
24 SRCREC *source = NULL; /* our list of sources */
25 int nsources = 0; /* the number of sources */
26
27 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28
29
30 void
31 initstypes() /* initialize source dispatch table */
32 {
33 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35 static SOBJECT ssobj = {ssetsrc, nopart};
36 static SOBJECT sphsobj = {sphsetsrc, nopart};
37 static SOBJECT cylsobj = {cylsetsrc, cylpart};
38 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39
40 sfun[MAT_MIRROR].mf = &mirror_vs;
41 sfun[MAT_DIRECT1].mf = &direct1_vs;
42 sfun[MAT_DIRECT2].mf = &direct2_vs;
43 sfun[OBJ_FACE].of = &fsobj;
44 sfun[OBJ_SOURCE].of = &ssobj;
45 sfun[OBJ_SPHERE].of = &sphsobj;
46 sfun[OBJ_CYLINDER].of = &cylsobj;
47 sfun[OBJ_RING].of = &rsobj;
48 }
49
50
51 int
52 newsource() /* allocate new source in our array */
53 {
54 if (nsources == 0)
55 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56 else if (nsources%SRCINC == 0)
57 source = (SRCREC *)realloc((void *)source,
58 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 if (source == NULL)
60 return(-1);
61 source[nsources].sflags = 0;
62 source[nsources].nhits = 1;
63 source[nsources].ntests = 2; /* initial hit probability = 50% */
64 #if SHADCACHE
65 source[nsources].obscache = NULL;
66 #endif
67 return(nsources++);
68 }
69
70
71 void
72 setflatss(src) /* set sampling for a flat source */
73 register SRCREC *src;
74 {
75 double mult;
76 register int i;
77
78 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
79 for (i = 0; i < 3; i++)
80 if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
81 break;
82 src->ss[SV][i] = 1.0;
83 fcross(src->ss[SU], src->ss[SV], src->snorm);
84 mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
85 for (i = 0; i < 3; i++)
86 src->ss[SU][i] *= mult;
87 fcross(src->ss[SV], src->snorm, src->ss[SU]);
88 }
89
90
91 void
92 fsetsrc(src, so) /* set a face as a source */
93 register SRCREC *src;
94 OBJREC *so;
95 {
96 register FACE *f;
97 register int i, j;
98 double d;
99
100 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
101 src->so = so;
102 /* get the face */
103 f = getface(so);
104 if (f->area == 0.0)
105 objerror(so, USER, "zero source area");
106 /* find the center */
107 for (j = 0; j < 3; j++) {
108 src->sloc[j] = 0.0;
109 for (i = 0; i < f->nv; i++)
110 src->sloc[j] += VERTEX(f,i)[j];
111 src->sloc[j] /= (double)f->nv;
112 }
113 if (!inface(src->sloc, f))
114 objerror(so, USER, "cannot hit source center");
115 src->sflags |= SFLAT;
116 VCOPY(src->snorm, f->norm);
117 src->ss2 = f->area;
118 /* find maximum radius */
119 src->srad = 0.;
120 for (i = 0; i < f->nv; i++) {
121 d = dist2(VERTEX(f,i), src->sloc);
122 if (d > src->srad)
123 src->srad = d;
124 }
125 src->srad = sqrt(src->srad);
126 /* compute size vectors */
127 if (f->nv == 4) /* parallelogram case */
128 for (j = 0; j < 3; j++) {
129 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
130 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
131 }
132 else
133 setflatss(src);
134 }
135
136
137 void
138 ssetsrc(src, so) /* set a source as a source */
139 register SRCREC *src;
140 register OBJREC *so;
141 {
142 double theta;
143
144 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
145 src->so = so;
146 if (so->oargs.nfargs != 4)
147 objerror(so, USER, "bad arguments");
148 src->sflags |= SDISTANT;
149 VCOPY(src->sloc, so->oargs.farg);
150 if (normalize(src->sloc) == 0.0)
151 objerror(so, USER, "zero direction");
152 theta = PI/180.0/2.0 * so->oargs.farg[3];
153 if (theta <= FTINY)
154 objerror(so, USER, "zero size");
155 src->ss2 = 2.0*PI * (1.0 - cos(theta));
156 /* the following is approximate */
157 src->srad = sqrt(src->ss2/PI);
158 VCOPY(src->snorm, src->sloc);
159 setflatss(src); /* hey, whatever works */
160 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
161 }
162
163
164 void
165 sphsetsrc(src, so) /* set a sphere as a source */
166 register SRCREC *src;
167 register OBJREC *so;
168 {
169 register int i;
170
171 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
172 src->so = so;
173 if (so->oargs.nfargs != 4)
174 objerror(so, USER, "bad # arguments");
175 if (so->oargs.farg[3] <= FTINY)
176 objerror(so, USER, "illegal source radius");
177 VCOPY(src->sloc, so->oargs.farg);
178 src->srad = so->oargs.farg[3];
179 src->ss2 = PI * src->srad * src->srad;
180 for (i = 0; i < 3; i++)
181 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
182 for (i = 0; i < 3; i++)
183 src->ss[i][i] = .7236 * so->oargs.farg[3];
184 }
185
186
187 void
188 rsetsrc(src, so) /* set a ring (disk) as a source */
189 register SRCREC *src;
190 OBJREC *so;
191 {
192 register CONE *co;
193
194 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
195 src->so = so;
196 /* get the ring */
197 co = getcone(so, 0);
198 if (CO_R1(co) <= FTINY)
199 objerror(so, USER, "illegal source radius");
200 VCOPY(src->sloc, CO_P0(co));
201 if (CO_R0(co) > 0.0)
202 objerror(so, USER, "cannot hit source center");
203 src->sflags |= SFLAT;
204 VCOPY(src->snorm, co->ad);
205 src->srad = CO_R1(co);
206 src->ss2 = PI * src->srad * src->srad;
207 setflatss(src);
208 }
209
210
211 void
212 cylsetsrc(src, so) /* set a cylinder as a source */
213 register SRCREC *src;
214 OBJREC *so;
215 {
216 register CONE *co;
217 register int i;
218
219 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
220 src->so = so;
221 /* get the cylinder */
222 co = getcone(so, 0);
223 if (CO_R0(co) <= FTINY)
224 objerror(so, USER, "illegal source radius");
225 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
226 objerror(so, WARNING, "source aspect too small");
227 src->sflags |= SCYL;
228 for (i = 0; i < 3; i++)
229 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
230 src->srad = .5*co->al;
231 src->ss2 = 2.*CO_R0(co)*co->al;
232 /* set sampling vectors */
233 for (i = 0; i < 3; i++)
234 src->ss[SU][i] = .5 * co->al * co->ad[i];
235 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
236 for (i = 0; i < 3; i++)
237 if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
238 break;
239 src->ss[SV][i] = 1.0;
240 fcross(src->ss[SW], src->ss[SV], co->ad);
241 normalize(src->ss[SW]);
242 for (i = 0; i < 3; i++)
243 src->ss[SW][i] *= .8559 * CO_R0(co);
244 fcross(src->ss[SV], src->ss[SW], co->ad);
245 }
246
247
248 SPOT *
249 makespot(m) /* make a spotlight */
250 register OBJREC *m;
251 {
252 register SPOT *ns;
253
254 if ((ns = (SPOT *)m->os) != NULL)
255 return(ns);
256 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
257 return(NULL);
258 if (m->oargs.farg[3] <= FTINY)
259 objerror(m, USER, "zero angle");
260 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
261 VCOPY(ns->aim, m->oargs.farg+4);
262 if ((ns->flen = normalize(ns->aim)) == 0.0)
263 objerror(m, USER, "zero focus vector");
264 m->os = (char *)ns;
265 return(ns);
266 }
267
268
269 int
270 spotout(r, s) /* check if we're outside spot region */
271 register RAY *r;
272 register SPOT *s;
273 {
274 double d;
275 FVECT vd;
276
277 if (s == NULL)
278 return(0);
279 if (s->flen < -FTINY) { /* distant source */
280 vd[0] = s->aim[0] - r->rorg[0];
281 vd[1] = s->aim[1] - r->rorg[1];
282 vd[2] = s->aim[2] - r->rorg[2];
283 d = DOT(r->rdir,vd);
284 /* wrong side?
285 if (d <= FTINY)
286 return(1); */
287 d = DOT(vd,vd) - d*d;
288 if (PI*d > s->siz)
289 return(1); /* out */
290 return(0); /* OK */
291 }
292 /* local source */
293 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
294 return(1); /* out */
295 return(0); /* OK */
296 }
297
298
299 double
300 fgetmaxdisk(ocent, op) /* get center and squared radius of face */
301 FVECT ocent;
302 OBJREC *op;
303 {
304 double maxrad2;
305 double d;
306 register int i, j;
307 register FACE *f;
308
309 f = getface(op);
310 if (f->area == 0.)
311 return(0.);
312 for (i = 0; i < 3; i++) {
313 ocent[i] = 0.;
314 for (j = 0; j < f->nv; j++)
315 ocent[i] += VERTEX(f,j)[i];
316 ocent[i] /= (double)f->nv;
317 }
318 d = DOT(ocent,f->norm);
319 for (i = 0; i < 3; i++)
320 ocent[i] += (f->offset - d)*f->norm[i];
321 maxrad2 = 0.;
322 for (j = 0; j < f->nv; j++) {
323 d = dist2(VERTEX(f,j), ocent);
324 if (d > maxrad2)
325 maxrad2 = d;
326 }
327 return(maxrad2);
328 }
329
330
331 double
332 rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
333 FVECT ocent;
334 OBJREC *op;
335 {
336 register CONE *co;
337
338 co = getcone(op, 0);
339 VCOPY(ocent, CO_P0(co));
340 return(CO_R1(co)*CO_R1(co));
341 }
342
343
344 double
345 fgetplaneq(nvec, op) /* get plane equation for face */
346 FVECT nvec;
347 OBJREC *op;
348 {
349 register FACE *fo;
350
351 fo = getface(op);
352 VCOPY(nvec, fo->norm);
353 return(fo->offset);
354 }
355
356
357 double
358 rgetplaneq(nvec, op) /* get plane equation for ring */
359 FVECT nvec;
360 OBJREC *op;
361 {
362 register CONE *co;
363
364 co = getcone(op, 0);
365 VCOPY(nvec, co->ad);
366 return(DOT(nvec, CO_P0(co)));
367 }
368
369
370 int
371 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
372 register SPOT *sp1, *sp2;
373 FVECT org;
374 {
375 FVECT cent;
376 double rad2, cos1, cos2;
377
378 cos1 = 1. - sp1->siz/(2.*PI);
379 cos2 = 1. - sp2->siz/(2.*PI);
380 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
381 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
382 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
383 /* compute and check disks */
384 rad2 = intercircle(cent, sp1->aim, sp2->aim,
385 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
386 if (rad2 <= FTINY || normalize(cent) == 0.)
387 return(0);
388 VCOPY(sp1->aim, cent);
389 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
390 return(1);
391 }
392
393
394 int
395 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
396 register SPOT *sp1, *sp2;
397 FVECT dir;
398 {
399 FVECT cent, c1, c2;
400 double rad2, d;
401 register int i;
402 /* move centers to common plane */
403 d = DOT(sp1->aim, dir);
404 for (i = 0; i < 3; i++)
405 c1[i] = sp1->aim[i] - d*dir[i];
406 d = DOT(sp2->aim, dir);
407 for (i = 0; i < 3; i++)
408 c2[i] = sp2->aim[i] - d*dir[i];
409 /* compute overlap */
410 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
411 if (rad2 <= FTINY)
412 return(0);
413 VCOPY(sp1->aim, cent);
414 sp1->siz = PI*rad2;
415 return(1);
416 }
417
418
419 int
420 checkspot(sp, nrm) /* check spotlight for behind source */
421 register SPOT *sp; /* spotlight */
422 FVECT nrm; /* source surface normal */
423 {
424 double d, d1;
425
426 d = DOT(sp->aim, nrm);
427 if (d > FTINY) /* center in front? */
428 return(1);
429 /* else check horizon */
430 d1 = 1. - sp->siz/(2.*PI);
431 return(1.-FTINY-d*d < d1*d1);
432 }
433
434
435 double
436 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
437 FVECT oc;
438 OBJREC *op;
439 register SPOT *sp;
440 FVECT pos;
441 {
442 FVECT onorm;
443 double offs, d, dist;
444 register int i;
445
446 offs = getplaneq(onorm, op);
447 d = -DOT(onorm, sp->aim);
448 if (d >= -FTINY && d <= FTINY)
449 return(0.);
450 dist = (DOT(pos, onorm) - offs)/d;
451 if (dist < 0.)
452 return(0.);
453 for (i = 0; i < 3; i++)
454 oc[i] = pos[i] + dist*sp->aim[i];
455 return(sp->siz*dist*dist/PI/(d*d));
456 }
457
458
459 double
460 beamdisk(oc, op, sp, dir) /* intersect beam with object op */
461 FVECT oc;
462 OBJREC *op;
463 register SPOT *sp;
464 FVECT dir;
465 {
466 FVECT onorm;
467 double offs, d, dist;
468 register int i;
469
470 offs = getplaneq(onorm, op);
471 d = -DOT(onorm, dir);
472 if (d >= -FTINY && d <= FTINY)
473 return(0.);
474 dist = (DOT(sp->aim, onorm) - offs)/d;
475 for (i = 0; i < 3; i++)
476 oc[i] = sp->aim[i] + dist*dir[i];
477 return(sp->siz/PI/(d*d));
478 }
479
480
481 double
482 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
483 FVECT cc; /* midpoint (return value) */
484 FVECT c1, c2; /* circle centers */
485 double r1s, r2s; /* radii squared */
486 {
487 double a2, d2, l;
488 FVECT disp;
489 register int i;
490
491 for (i = 0; i < 3; i++)
492 disp[i] = c2[i] - c1[i];
493 d2 = DOT(disp,disp);
494 /* circle within overlap? */
495 if (r1s < r2s) {
496 if (r2s >= r1s + d2) {
497 VCOPY(cc, c1);
498 return(r1s);
499 }
500 } else {
501 if (r1s >= r2s + d2) {
502 VCOPY(cc, c2);
503 return(r2s);
504 }
505 }
506 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
507 /* no overlap? */
508 if (a2 <= 0.)
509 return(0.);
510 /* overlap, compute center */
511 l = sqrt((r1s - a2)/d2);
512 for (i = 0; i < 3; i++)
513 cc[i] = c1[i] + l*disp[i];
514 return(a2);
515 }