ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.14
Committed: Wed Dec 31 19:38:27 2003 UTC (20 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P2, rad3R7P1, rad3R6, rad3R6P1
Changes since 2.13: +3 -3 lines
Log Message:
Added shadow casting algorithm and separated occlusion cache routines

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsupp.c,v 2.13 2003/12/31 02:03:08 greg Exp $";
3 #endif
4 /*
5 * Support routines for source objects and materials
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "otypes.h"
15
16 #include "source.h"
17
18 #include "cone.h"
19
20 #include "face.h"
21
22 #define SRCINC 8 /* realloc increment for array */
23
24 SRCREC *source = NULL; /* our list of sources */
25 int nsources = 0; /* the number of sources */
26
27 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28
29
30 void
31 initstypes() /* initialize source dispatch table */
32 {
33 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35 static SOBJECT ssobj = {ssetsrc, nopart};
36 static SOBJECT sphsobj = {sphsetsrc, nopart};
37 static SOBJECT cylsobj = {cylsetsrc, cylpart};
38 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39
40 sfun[MAT_MIRROR].mf = &mirror_vs;
41 sfun[MAT_DIRECT1].mf = &direct1_vs;
42 sfun[MAT_DIRECT2].mf = &direct2_vs;
43 sfun[OBJ_FACE].of = &fsobj;
44 sfun[OBJ_SOURCE].of = &ssobj;
45 sfun[OBJ_SPHERE].of = &sphsobj;
46 sfun[OBJ_CYLINDER].of = &cylsobj;
47 sfun[OBJ_RING].of = &rsobj;
48 }
49
50
51 int
52 newsource() /* allocate new source in our array */
53 {
54 if (nsources == 0)
55 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56 else if (nsources%SRCINC == 0)
57 source = (SRCREC *)realloc((void *)source,
58 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 if (source == NULL)
60 return(-1);
61 source[nsources].sflags = 0;
62 source[nsources].nhits = 1;
63 source[nsources].ntests = 2; /* initial hit probability = 50% */
64 #if SHADCACHE
65 source[nsources].obscache = NULL;
66 #endif
67 return(nsources++);
68 }
69
70
71 void
72 setflatss(src) /* set sampling for a flat source */
73 register SRCREC *src;
74 {
75 double mult;
76 register int i;
77
78 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
79 for (i = 0; i < 3; i++)
80 if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
81 break;
82 src->ss[SV][i] = 1.0;
83 fcross(src->ss[SU], src->ss[SV], src->snorm);
84 mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
85 for (i = 0; i < 3; i++)
86 src->ss[SU][i] *= mult;
87 fcross(src->ss[SV], src->snorm, src->ss[SU]);
88 }
89
90
91 void
92 fsetsrc(src, so) /* set a face as a source */
93 register SRCREC *src;
94 OBJREC *so;
95 {
96 register FACE *f;
97 register int i, j;
98 double d;
99
100 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
101 src->so = so;
102 /* get the face */
103 f = getface(so);
104 /* find the center */
105 for (j = 0; j < 3; j++) {
106 src->sloc[j] = 0.0;
107 for (i = 0; i < f->nv; i++)
108 src->sloc[j] += VERTEX(f,i)[j];
109 src->sloc[j] /= (double)f->nv;
110 }
111 if (!inface(src->sloc, f))
112 objerror(so, USER, "cannot hit center");
113 src->sflags |= SFLAT;
114 VCOPY(src->snorm, f->norm);
115 src->ss2 = f->area;
116 /* find maximum radius */
117 src->srad = 0.;
118 for (i = 0; i < f->nv; i++) {
119 d = dist2(VERTEX(f,i), src->sloc);
120 if (d > src->srad)
121 src->srad = d;
122 }
123 src->srad = sqrt(src->srad);
124 /* compute size vectors */
125 if (f->nv == 4) /* parallelogram case */
126 for (j = 0; j < 3; j++) {
127 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
128 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
129 }
130 else
131 setflatss(src);
132 }
133
134
135 void
136 ssetsrc(src, so) /* set a source as a source */
137 register SRCREC *src;
138 register OBJREC *so;
139 {
140 double theta;
141
142 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
143 src->so = so;
144 if (so->oargs.nfargs != 4)
145 objerror(so, USER, "bad arguments");
146 src->sflags |= SDISTANT;
147 VCOPY(src->sloc, so->oargs.farg);
148 if (normalize(src->sloc) == 0.0)
149 objerror(so, USER, "zero direction");
150 theta = PI/180.0/2.0 * so->oargs.farg[3];
151 if (theta <= FTINY)
152 objerror(so, USER, "zero size");
153 src->ss2 = 2.0*PI * (1.0 - cos(theta));
154 /* the following is approximate */
155 src->srad = sqrt(src->ss2/PI);
156 VCOPY(src->snorm, src->sloc);
157 setflatss(src); /* hey, whatever works */
158 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
159 }
160
161
162 void
163 sphsetsrc(src, so) /* set a sphere as a source */
164 register SRCREC *src;
165 register OBJREC *so;
166 {
167 register int i;
168
169 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
170 src->so = so;
171 if (so->oargs.nfargs != 4)
172 objerror(so, USER, "bad # arguments");
173 if (so->oargs.farg[3] <= FTINY)
174 objerror(so, USER, "illegal radius");
175 VCOPY(src->sloc, so->oargs.farg);
176 src->srad = so->oargs.farg[3];
177 src->ss2 = PI * src->srad * src->srad;
178 for (i = 0; i < 3; i++)
179 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
180 for (i = 0; i < 3; i++)
181 src->ss[i][i] = .7236 * so->oargs.farg[3];
182 }
183
184
185 void
186 rsetsrc(src, so) /* set a ring (disk) as a source */
187 register SRCREC *src;
188 OBJREC *so;
189 {
190 register CONE *co;
191
192 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
193 src->so = so;
194 /* get the ring */
195 co = getcone(so, 0);
196 VCOPY(src->sloc, CO_P0(co));
197 if (CO_R0(co) > 0.0)
198 objerror(so, USER, "cannot hit center");
199 src->sflags |= SFLAT;
200 VCOPY(src->snorm, co->ad);
201 src->srad = CO_R1(co);
202 src->ss2 = PI * src->srad * src->srad;
203 setflatss(src);
204 }
205
206
207 void
208 cylsetsrc(src, so) /* set a cylinder as a source */
209 register SRCREC *src;
210 OBJREC *so;
211 {
212 register CONE *co;
213 register int i;
214
215 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
216 src->so = so;
217 /* get the cylinder */
218 co = getcone(so, 0);
219 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
220 objerror(so, WARNING, "source aspect too small");
221 src->sflags |= SCYL;
222 for (i = 0; i < 3; i++)
223 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
224 src->srad = .5*co->al;
225 src->ss2 = 2.*CO_R0(co)*co->al;
226 /* set sampling vectors */
227 for (i = 0; i < 3; i++)
228 src->ss[SU][i] = .5 * co->al * co->ad[i];
229 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
230 for (i = 0; i < 3; i++)
231 if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
232 break;
233 src->ss[SV][i] = 1.0;
234 fcross(src->ss[SW], src->ss[SV], co->ad);
235 normalize(src->ss[SW]);
236 for (i = 0; i < 3; i++)
237 src->ss[SW][i] *= .8559 * CO_R0(co);
238 fcross(src->ss[SV], src->ss[SW], co->ad);
239 }
240
241
242 SPOT *
243 makespot(m) /* make a spotlight */
244 register OBJREC *m;
245 {
246 register SPOT *ns;
247
248 if ((ns = (SPOT *)m->os) != NULL)
249 return(ns);
250 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
251 return(NULL);
252 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
253 VCOPY(ns->aim, m->oargs.farg+4);
254 if ((ns->flen = normalize(ns->aim)) == 0.0)
255 objerror(m, USER, "zero focus vector");
256 m->os = (char *)ns;
257 return(ns);
258 }
259
260
261 int
262 spotout(r, s) /* check if we're outside spot region */
263 register RAY *r;
264 register SPOT *s;
265 {
266 double d;
267 FVECT vd;
268
269 if (s == NULL)
270 return(0);
271 if (s->flen < -FTINY) { /* distant source */
272 vd[0] = s->aim[0] - r->rorg[0];
273 vd[1] = s->aim[1] - r->rorg[1];
274 vd[2] = s->aim[2] - r->rorg[2];
275 d = DOT(r->rdir,vd);
276 /* wrong side?
277 if (d <= FTINY)
278 return(1); */
279 d = DOT(vd,vd) - d*d;
280 if (PI*d > s->siz)
281 return(1); /* out */
282 return(0); /* OK */
283 }
284 /* local source */
285 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
286 return(1); /* out */
287 return(0); /* OK */
288 }
289
290
291 double
292 fgetmaxdisk(ocent, op) /* get center and squared radius of face */
293 FVECT ocent;
294 OBJREC *op;
295 {
296 double maxrad2;
297 double d;
298 register int i, j;
299 register FACE *f;
300
301 f = getface(op);
302 if (f->area == 0.)
303 return(0.);
304 for (i = 0; i < 3; i++) {
305 ocent[i] = 0.;
306 for (j = 0; j < f->nv; j++)
307 ocent[i] += VERTEX(f,j)[i];
308 ocent[i] /= (double)f->nv;
309 }
310 d = DOT(ocent,f->norm);
311 for (i = 0; i < 3; i++)
312 ocent[i] += (f->offset - d)*f->norm[i];
313 maxrad2 = 0.;
314 for (j = 0; j < f->nv; j++) {
315 d = dist2(VERTEX(f,j), ocent);
316 if (d > maxrad2)
317 maxrad2 = d;
318 }
319 return(maxrad2);
320 }
321
322
323 double
324 rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
325 FVECT ocent;
326 OBJREC *op;
327 {
328 register CONE *co;
329
330 co = getcone(op, 0);
331 VCOPY(ocent, CO_P0(co));
332 return(CO_R1(co)*CO_R1(co));
333 }
334
335
336 double
337 fgetplaneq(nvec, op) /* get plane equation for face */
338 FVECT nvec;
339 OBJREC *op;
340 {
341 register FACE *fo;
342
343 fo = getface(op);
344 VCOPY(nvec, fo->norm);
345 return(fo->offset);
346 }
347
348
349 double
350 rgetplaneq(nvec, op) /* get plane equation for ring */
351 FVECT nvec;
352 OBJREC *op;
353 {
354 register CONE *co;
355
356 co = getcone(op, 0);
357 VCOPY(nvec, co->ad);
358 return(DOT(nvec, CO_P0(co)));
359 }
360
361
362 int
363 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
364 register SPOT *sp1, *sp2;
365 FVECT org;
366 {
367 FVECT cent;
368 double rad2, cos1, cos2;
369
370 cos1 = 1. - sp1->siz/(2.*PI);
371 cos2 = 1. - sp2->siz/(2.*PI);
372 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
373 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
374 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
375 /* compute and check disks */
376 rad2 = intercircle(cent, sp1->aim, sp2->aim,
377 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
378 if (rad2 <= FTINY || normalize(cent) == 0.)
379 return(0);
380 VCOPY(sp1->aim, cent);
381 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
382 return(1);
383 }
384
385
386 int
387 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
388 register SPOT *sp1, *sp2;
389 FVECT dir;
390 {
391 FVECT cent, c1, c2;
392 double rad2, d;
393 register int i;
394 /* move centers to common plane */
395 d = DOT(sp1->aim, dir);
396 for (i = 0; i < 3; i++)
397 c1[i] = sp1->aim[i] - d*dir[i];
398 d = DOT(sp2->aim, dir);
399 for (i = 0; i < 3; i++)
400 c2[i] = sp2->aim[i] - d*dir[i];
401 /* compute overlap */
402 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
403 if (rad2 <= FTINY)
404 return(0);
405 VCOPY(sp1->aim, cent);
406 sp1->siz = PI*rad2;
407 return(1);
408 }
409
410
411 int
412 checkspot(sp, nrm) /* check spotlight for behind source */
413 register SPOT *sp; /* spotlight */
414 FVECT nrm; /* source surface normal */
415 {
416 double d, d1;
417
418 d = DOT(sp->aim, nrm);
419 if (d > FTINY) /* center in front? */
420 return(1);
421 /* else check horizon */
422 d1 = 1. - sp->siz/(2.*PI);
423 return(1.-FTINY-d*d < d1*d1);
424 }
425
426
427 double
428 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
429 FVECT oc;
430 OBJREC *op;
431 register SPOT *sp;
432 FVECT pos;
433 {
434 FVECT onorm;
435 double offs, d, dist;
436 register int i;
437
438 offs = getplaneq(onorm, op);
439 d = -DOT(onorm, sp->aim);
440 if (d >= -FTINY && d <= FTINY)
441 return(0.);
442 dist = (DOT(pos, onorm) - offs)/d;
443 if (dist < 0.)
444 return(0.);
445 for (i = 0; i < 3; i++)
446 oc[i] = pos[i] + dist*sp->aim[i];
447 return(sp->siz*dist*dist/PI/(d*d));
448 }
449
450
451 double
452 beamdisk(oc, op, sp, dir) /* intersect beam with object op */
453 FVECT oc;
454 OBJREC *op;
455 register SPOT *sp;
456 FVECT dir;
457 {
458 FVECT onorm;
459 double offs, d, dist;
460 register int i;
461
462 offs = getplaneq(onorm, op);
463 d = -DOT(onorm, dir);
464 if (d >= -FTINY && d <= FTINY)
465 return(0.);
466 dist = (DOT(sp->aim, onorm) - offs)/d;
467 for (i = 0; i < 3; i++)
468 oc[i] = sp->aim[i] + dist*dir[i];
469 return(sp->siz/PI/(d*d));
470 }
471
472
473 double
474 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
475 FVECT cc; /* midpoint (return value) */
476 FVECT c1, c2; /* circle centers */
477 double r1s, r2s; /* radii squared */
478 {
479 double a2, d2, l;
480 FVECT disp;
481 register int i;
482
483 for (i = 0; i < 3; i++)
484 disp[i] = c2[i] - c1[i];
485 d2 = DOT(disp,disp);
486 /* circle within overlap? */
487 if (r1s < r2s) {
488 if (r2s >= r1s + d2) {
489 VCOPY(cc, c1);
490 return(r1s);
491 }
492 } else {
493 if (r1s >= r2s + d2) {
494 VCOPY(cc, c2);
495 return(r2s);
496 }
497 }
498 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
499 /* no overlap? */
500 if (a2 <= 0.)
501 return(0.);
502 /* overlap, compute center */
503 l = sqrt((r1s - a2)/d2);
504 for (i = 0; i < 3; i++)
505 cc[i] = c1[i] + l*disp[i];
506 return(a2);
507 }