ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.11
Committed: Wed Apr 23 00:52:34 2003 UTC (21 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.10: +1 -1 lines
Log Message:
Added (void *) cast to realloc calls

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id$";
3 #endif
4 /*
5 * Support routines for source objects and materials
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "otypes.h"
15
16 #include "source.h"
17
18 #include "cone.h"
19
20 #include "face.h"
21
22 #define SRCINC 4 /* realloc increment for array */
23
24 SRCREC *source = NULL; /* our list of sources */
25 int nsources = 0; /* the number of sources */
26
27 SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28
29
30 void
31 initstypes() /* initialize source dispatch table */
32 {
33 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35 static SOBJECT ssobj = {ssetsrc, nopart};
36 static SOBJECT sphsobj = {sphsetsrc, nopart};
37 static SOBJECT cylsobj = {cylsetsrc, cylpart};
38 static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39
40 sfun[MAT_MIRROR].mf = &mirror_vs;
41 sfun[MAT_DIRECT1].mf = &direct1_vs;
42 sfun[MAT_DIRECT2].mf = &direct2_vs;
43 sfun[OBJ_FACE].of = &fsobj;
44 sfun[OBJ_SOURCE].of = &ssobj;
45 sfun[OBJ_SPHERE].of = &sphsobj;
46 sfun[OBJ_CYLINDER].of = &cylsobj;
47 sfun[OBJ_RING].of = &rsobj;
48 }
49
50
51 int
52 newsource() /* allocate new source in our array */
53 {
54 if (nsources == 0)
55 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56 else if (nsources%SRCINC == 0)
57 source = (SRCREC *)realloc((void *)source,
58 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 if (source == NULL)
60 return(-1);
61 source[nsources].sflags = 0;
62 source[nsources].nhits = 1;
63 source[nsources].ntests = 2; /* initial hit probability = 1/2 */
64 return(nsources++);
65 }
66
67
68 void
69 setflatss(src) /* set sampling for a flat source */
70 register SRCREC *src;
71 {
72 double mult;
73 register int i;
74
75 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
76 for (i = 0; i < 3; i++)
77 if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
78 break;
79 src->ss[SV][i] = 1.0;
80 fcross(src->ss[SU], src->ss[SV], src->snorm);
81 mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
82 for (i = 0; i < 3; i++)
83 src->ss[SU][i] *= mult;
84 fcross(src->ss[SV], src->snorm, src->ss[SU]);
85 }
86
87
88 void
89 fsetsrc(src, so) /* set a face as a source */
90 register SRCREC *src;
91 OBJREC *so;
92 {
93 register FACE *f;
94 register int i, j;
95 double d;
96
97 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98 src->so = so;
99 /* get the face */
100 f = getface(so);
101 /* find the center */
102 for (j = 0; j < 3; j++) {
103 src->sloc[j] = 0.0;
104 for (i = 0; i < f->nv; i++)
105 src->sloc[j] += VERTEX(f,i)[j];
106 src->sloc[j] /= (double)f->nv;
107 }
108 if (!inface(src->sloc, f))
109 objerror(so, USER, "cannot hit center");
110 src->sflags |= SFLAT;
111 VCOPY(src->snorm, f->norm);
112 src->ss2 = f->area;
113 /* find maximum radius */
114 src->srad = 0.;
115 for (i = 0; i < f->nv; i++) {
116 d = dist2(VERTEX(f,i), src->sloc);
117 if (d > src->srad)
118 src->srad = d;
119 }
120 src->srad = sqrt(src->srad);
121 /* compute size vectors */
122 if (f->nv == 4) /* parallelogram case */
123 for (j = 0; j < 3; j++) {
124 src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
125 src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
126 }
127 else
128 setflatss(src);
129 }
130
131
132 void
133 ssetsrc(src, so) /* set a source as a source */
134 register SRCREC *src;
135 register OBJREC *so;
136 {
137 double theta;
138
139 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
140 src->so = so;
141 if (so->oargs.nfargs != 4)
142 objerror(so, USER, "bad arguments");
143 src->sflags |= SDISTANT;
144 VCOPY(src->sloc, so->oargs.farg);
145 if (normalize(src->sloc) == 0.0)
146 objerror(so, USER, "zero direction");
147 theta = PI/180.0/2.0 * so->oargs.farg[3];
148 if (theta <= FTINY)
149 objerror(so, USER, "zero size");
150 src->ss2 = 2.0*PI * (1.0 - cos(theta));
151 /* the following is approximate */
152 src->srad = sqrt(src->ss2/PI);
153 VCOPY(src->snorm, src->sloc);
154 setflatss(src); /* hey, whatever works */
155 src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
156 }
157
158
159 void
160 sphsetsrc(src, so) /* set a sphere as a source */
161 register SRCREC *src;
162 register OBJREC *so;
163 {
164 register int i;
165
166 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
167 src->so = so;
168 if (so->oargs.nfargs != 4)
169 objerror(so, USER, "bad # arguments");
170 if (so->oargs.farg[3] <= FTINY)
171 objerror(so, USER, "illegal radius");
172 VCOPY(src->sloc, so->oargs.farg);
173 src->srad = so->oargs.farg[3];
174 src->ss2 = PI * src->srad * src->srad;
175 for (i = 0; i < 3; i++)
176 src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
177 for (i = 0; i < 3; i++)
178 src->ss[i][i] = .7236 * so->oargs.farg[3];
179 }
180
181
182 void
183 rsetsrc(src, so) /* set a ring (disk) as a source */
184 register SRCREC *src;
185 OBJREC *so;
186 {
187 register CONE *co;
188
189 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
190 src->so = so;
191 /* get the ring */
192 co = getcone(so, 0);
193 VCOPY(src->sloc, CO_P0(co));
194 if (CO_R0(co) > 0.0)
195 objerror(so, USER, "cannot hit center");
196 src->sflags |= SFLAT;
197 VCOPY(src->snorm, co->ad);
198 src->srad = CO_R1(co);
199 src->ss2 = PI * src->srad * src->srad;
200 setflatss(src);
201 }
202
203
204 void
205 cylsetsrc(src, so) /* set a cylinder as a source */
206 register SRCREC *src;
207 OBJREC *so;
208 {
209 register CONE *co;
210 register int i;
211
212 src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
213 src->so = so;
214 /* get the cylinder */
215 co = getcone(so, 0);
216 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
217 objerror(so, WARNING, "source aspect too small");
218 src->sflags |= SCYL;
219 for (i = 0; i < 3; i++)
220 src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
221 src->srad = .5*co->al;
222 src->ss2 = 2.*CO_R0(co)*co->al;
223 /* set sampling vectors */
224 for (i = 0; i < 3; i++)
225 src->ss[SU][i] = .5 * co->al * co->ad[i];
226 src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
227 for (i = 0; i < 3; i++)
228 if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
229 break;
230 src->ss[SV][i] = 1.0;
231 fcross(src->ss[SW], src->ss[SV], co->ad);
232 normalize(src->ss[SW]);
233 for (i = 0; i < 3; i++)
234 src->ss[SW][i] *= .8559 * CO_R0(co);
235 fcross(src->ss[SV], src->ss[SW], co->ad);
236 }
237
238
239 SPOT *
240 makespot(m) /* make a spotlight */
241 register OBJREC *m;
242 {
243 register SPOT *ns;
244
245 if ((ns = (SPOT *)m->os) != NULL)
246 return(ns);
247 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
248 return(NULL);
249 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
250 VCOPY(ns->aim, m->oargs.farg+4);
251 if ((ns->flen = normalize(ns->aim)) == 0.0)
252 objerror(m, USER, "zero focus vector");
253 m->os = (char *)ns;
254 return(ns);
255 }
256
257
258 int
259 spotout(r, s) /* check if we're outside spot region */
260 register RAY *r;
261 register SPOT *s;
262 {
263 double d;
264 FVECT vd;
265
266 if (s == NULL)
267 return(0);
268 if (s->flen < -FTINY) { /* distant source */
269 vd[0] = s->aim[0] - r->rorg[0];
270 vd[1] = s->aim[1] - r->rorg[1];
271 vd[2] = s->aim[2] - r->rorg[2];
272 d = DOT(r->rdir,vd);
273 /* wrong side?
274 if (d <= FTINY)
275 return(1); */
276 d = DOT(vd,vd) - d*d;
277 if (PI*d > s->siz)
278 return(1); /* out */
279 return(0); /* OK */
280 }
281 /* local source */
282 if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
283 return(1); /* out */
284 return(0); /* OK */
285 }
286
287
288 double
289 fgetmaxdisk(ocent, op) /* get center and squared radius of face */
290 FVECT ocent;
291 OBJREC *op;
292 {
293 double maxrad2;
294 double d;
295 register int i, j;
296 register FACE *f;
297
298 f = getface(op);
299 if (f->area == 0.)
300 return(0.);
301 for (i = 0; i < 3; i++) {
302 ocent[i] = 0.;
303 for (j = 0; j < f->nv; j++)
304 ocent[i] += VERTEX(f,j)[i];
305 ocent[i] /= (double)f->nv;
306 }
307 d = DOT(ocent,f->norm);
308 for (i = 0; i < 3; i++)
309 ocent[i] += (f->offset - d)*f->norm[i];
310 maxrad2 = 0.;
311 for (j = 0; j < f->nv; j++) {
312 d = dist2(VERTEX(f,j), ocent);
313 if (d > maxrad2)
314 maxrad2 = d;
315 }
316 return(maxrad2);
317 }
318
319
320 double
321 rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
322 FVECT ocent;
323 OBJREC *op;
324 {
325 register CONE *co;
326
327 co = getcone(op, 0);
328 VCOPY(ocent, CO_P0(co));
329 return(CO_R1(co)*CO_R1(co));
330 }
331
332
333 double
334 fgetplaneq(nvec, op) /* get plane equation for face */
335 FVECT nvec;
336 OBJREC *op;
337 {
338 register FACE *fo;
339
340 fo = getface(op);
341 VCOPY(nvec, fo->norm);
342 return(fo->offset);
343 }
344
345
346 double
347 rgetplaneq(nvec, op) /* get plane equation for ring */
348 FVECT nvec;
349 OBJREC *op;
350 {
351 register CONE *co;
352
353 co = getcone(op, 0);
354 VCOPY(nvec, co->ad);
355 return(DOT(nvec, CO_P0(co)));
356 }
357
358
359 int
360 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
361 register SPOT *sp1, *sp2;
362 FVECT org;
363 {
364 FVECT cent;
365 double rad2, cos1, cos2;
366
367 cos1 = 1. - sp1->siz/(2.*PI);
368 cos2 = 1. - sp2->siz/(2.*PI);
369 if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
370 return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
371 sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
372 /* compute and check disks */
373 rad2 = intercircle(cent, sp1->aim, sp2->aim,
374 1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
375 if (rad2 <= FTINY || normalize(cent) == 0.)
376 return(0);
377 VCOPY(sp1->aim, cent);
378 sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
379 return(1);
380 }
381
382
383 int
384 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
385 register SPOT *sp1, *sp2;
386 FVECT dir;
387 {
388 FVECT cent, c1, c2;
389 double rad2, d;
390 register int i;
391 /* move centers to common plane */
392 d = DOT(sp1->aim, dir);
393 for (i = 0; i < 3; i++)
394 c1[i] = sp1->aim[i] - d*dir[i];
395 d = DOT(sp2->aim, dir);
396 for (i = 0; i < 3; i++)
397 c2[i] = sp2->aim[i] - d*dir[i];
398 /* compute overlap */
399 rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
400 if (rad2 <= FTINY)
401 return(0);
402 VCOPY(sp1->aim, cent);
403 sp1->siz = PI*rad2;
404 return(1);
405 }
406
407
408 int
409 checkspot(sp, nrm) /* check spotlight for behind source */
410 register SPOT *sp; /* spotlight */
411 FVECT nrm; /* source surface normal */
412 {
413 double d, d1;
414
415 d = DOT(sp->aim, nrm);
416 if (d > FTINY) /* center in front? */
417 return(1);
418 /* else check horizon */
419 d1 = 1. - sp->siz/(2.*PI);
420 return(1.-FTINY-d*d < d1*d1);
421 }
422
423
424 double
425 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
426 FVECT oc;
427 OBJREC *op;
428 register SPOT *sp;
429 FVECT pos;
430 {
431 FVECT onorm;
432 double offs, d, dist;
433 register int i;
434
435 offs = getplaneq(onorm, op);
436 d = -DOT(onorm, sp->aim);
437 if (d >= -FTINY && d <= FTINY)
438 return(0.);
439 dist = (DOT(pos, onorm) - offs)/d;
440 if (dist < 0.)
441 return(0.);
442 for (i = 0; i < 3; i++)
443 oc[i] = pos[i] + dist*sp->aim[i];
444 return(sp->siz*dist*dist/PI/(d*d));
445 }
446
447
448 double
449 beamdisk(oc, op, sp, dir) /* intersect beam with object op */
450 FVECT oc;
451 OBJREC *op;
452 register SPOT *sp;
453 FVECT dir;
454 {
455 FVECT onorm;
456 double offs, d, dist;
457 register int i;
458
459 offs = getplaneq(onorm, op);
460 d = -DOT(onorm, dir);
461 if (d >= -FTINY && d <= FTINY)
462 return(0.);
463 dist = (DOT(sp->aim, onorm) - offs)/d;
464 for (i = 0; i < 3; i++)
465 oc[i] = sp->aim[i] + dist*dir[i];
466 return(sp->siz/PI/(d*d));
467 }
468
469
470 double
471 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
472 FVECT cc; /* midpoint (return value) */
473 FVECT c1, c2; /* circle centers */
474 double r1s, r2s; /* radii squared */
475 {
476 double a2, d2, l;
477 FVECT disp;
478 register int i;
479
480 for (i = 0; i < 3; i++)
481 disp[i] = c2[i] - c1[i];
482 d2 = DOT(disp,disp);
483 /* circle within overlap? */
484 if (r1s < r2s) {
485 if (r2s >= r1s + d2) {
486 VCOPY(cc, c1);
487 return(r1s);
488 }
489 } else {
490 if (r1s >= r2s + d2) {
491 VCOPY(cc, c2);
492 return(r2s);
493 }
494 }
495 a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
496 /* no overlap? */
497 if (a2 <= 0.)
498 return(0.);
499 /* overlap, compute center */
500 l = sqrt((r1s - a2)/d2);
501 for (i = 0; i < 3; i++)
502 cc[i] = c1[i] + l*disp[i];
503 return(a2);
504 }