ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.9
Committed: Sat Feb 22 02:07:29 2003 UTC (21 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.8: +71 -8 lines
Log Message:
Changes and check-in for 3.5 release
Includes new source files and modifications not recorded for many years
See ray/doc/notes/ReleaseNotes for notes between 3.1 and 3.5 release

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.9 static const char RCSid[] = "$Id$";
3 greg 1.1 #endif
4     /*
5     * Support routines for source objects and materials
6 greg 2.9 *
7     * External symbols declared in source.h
8     */
9    
10     /* ====================================================================
11     * The Radiance Software License, Version 1.0
12     *
13     * Copyright (c) 1990 - 2002 The Regents of the University of California,
14     * through Lawrence Berkeley National Laboratory. All rights reserved.
15     *
16     * Redistribution and use in source and binary forms, with or without
17     * modification, are permitted provided that the following conditions
18     * are met:
19     *
20     * 1. Redistributions of source code must retain the above copyright
21     * notice, this list of conditions and the following disclaimer.
22     *
23     * 2. Redistributions in binary form must reproduce the above copyright
24     * notice, this list of conditions and the following disclaimer in
25     * the documentation and/or other materials provided with the
26     * distribution.
27     *
28     * 3. The end-user documentation included with the redistribution,
29     * if any, must include the following acknowledgment:
30     * "This product includes Radiance software
31     * (http://radsite.lbl.gov/)
32     * developed by the Lawrence Berkeley National Laboratory
33     * (http://www.lbl.gov/)."
34     * Alternately, this acknowledgment may appear in the software itself,
35     * if and wherever such third-party acknowledgments normally appear.
36     *
37     * 4. The names "Radiance," "Lawrence Berkeley National Laboratory"
38     * and "The Regents of the University of California" must
39     * not be used to endorse or promote products derived from this
40     * software without prior written permission. For written
41     * permission, please contact [email protected].
42     *
43     * 5. Products derived from this software may not be called "Radiance",
44     * nor may "Radiance" appear in their name, without prior written
45     * permission of Lawrence Berkeley National Laboratory.
46     *
47     * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
48     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
49     * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50     * DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
51     * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54     * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55     * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56     * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58     * SUCH DAMAGE.
59     * ====================================================================
60     *
61     * This software consists of voluntary contributions made by many
62     * individuals on behalf of Lawrence Berkeley National Laboratory. For more
63     * information on Lawrence Berkeley National Laboratory, please see
64     * <http://www.lbl.gov/>.
65 greg 1.1 */
66    
67     #include "ray.h"
68    
69     #include "otypes.h"
70    
71     #include "source.h"
72    
73     #include "cone.h"
74    
75     #include "face.h"
76    
77 greg 1.14 #define SRCINC 4 /* realloc increment for array */
78 greg 1.1
79     SRCREC *source = NULL; /* our list of sources */
80     int nsources = 0; /* the number of sources */
81    
82     SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
83    
84    
85 greg 2.9 void
86 greg 1.1 initstypes() /* initialize source dispatch table */
87     {
88 greg 1.9 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
89 greg 1.14 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
90     static SOBJECT ssobj = {ssetsrc, nopart};
91     static SOBJECT sphsobj = {sphsetsrc, nopart};
92     static SOBJECT cylsobj = {cylsetsrc, cylpart};
93     static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
94 greg 1.1
95     sfun[MAT_MIRROR].mf = &mirror_vs;
96 greg 1.9 sfun[MAT_DIRECT1].mf = &direct1_vs;
97     sfun[MAT_DIRECT2].mf = &direct2_vs;
98 greg 1.1 sfun[OBJ_FACE].of = &fsobj;
99     sfun[OBJ_SOURCE].of = &ssobj;
100     sfun[OBJ_SPHERE].of = &sphsobj;
101 greg 1.14 sfun[OBJ_CYLINDER].of = &cylsobj;
102 greg 1.1 sfun[OBJ_RING].of = &rsobj;
103     }
104    
105    
106 greg 1.2 int
107 greg 1.1 newsource() /* allocate new source in our array */
108     {
109     if (nsources == 0)
110 greg 1.13 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
111     else if (nsources%SRCINC == 0)
112 greg 1.1 source = (SRCREC *)realloc((char *)source,
113 greg 1.13 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
114 greg 1.1 if (source == NULL)
115 greg 1.2 return(-1);
116 greg 1.1 source[nsources].sflags = 0;
117     source[nsources].nhits = 1;
118     source[nsources].ntests = 2; /* initial hit probability = 1/2 */
119 greg 1.2 return(nsources++);
120 greg 1.1 }
121    
122    
123 greg 2.9 void
124 greg 1.14 setflatss(src) /* set sampling for a flat source */
125     register SRCREC *src;
126     {
127     double mult;
128     register int i;
129    
130     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
131     for (i = 0; i < 3; i++)
132     if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
133     break;
134     src->ss[SV][i] = 1.0;
135     fcross(src->ss[SU], src->ss[SV], src->snorm);
136     mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
137     for (i = 0; i < 3; i++)
138     src->ss[SU][i] *= mult;
139     fcross(src->ss[SV], src->snorm, src->ss[SU]);
140     }
141    
142    
143 greg 2.9 void
144 greg 1.1 fsetsrc(src, so) /* set a face as a source */
145     register SRCREC *src;
146     OBJREC *so;
147     {
148     register FACE *f;
149     register int i, j;
150 greg 1.14 double d;
151 greg 1.1
152     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
153     src->so = so;
154     /* get the face */
155     f = getface(so);
156     /* find the center */
157     for (j = 0; j < 3; j++) {
158     src->sloc[j] = 0.0;
159     for (i = 0; i < f->nv; i++)
160     src->sloc[j] += VERTEX(f,i)[j];
161     src->sloc[j] /= (double)f->nv;
162     }
163     if (!inface(src->sloc, f))
164     objerror(so, USER, "cannot hit center");
165     src->sflags |= SFLAT;
166     VCOPY(src->snorm, f->norm);
167     src->ss2 = f->area;
168 greg 1.14 /* find maximum radius */
169     src->srad = 0.;
170     for (i = 0; i < f->nv; i++) {
171     d = dist2(VERTEX(f,i), src->sloc);
172     if (d > src->srad)
173     src->srad = d;
174     }
175     src->srad = sqrt(src->srad);
176     /* compute size vectors */
177 greg 2.7 if (f->nv == 4) /* parallelogram case */
178 greg 1.14 for (j = 0; j < 3; j++) {
179     src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
180     src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
181     }
182     else
183     setflatss(src);
184 greg 1.1 }
185    
186    
187 greg 2.9 void
188 greg 1.1 ssetsrc(src, so) /* set a source as a source */
189     register SRCREC *src;
190     register OBJREC *so;
191     {
192     double theta;
193    
194     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
195     src->so = so;
196     if (so->oargs.nfargs != 4)
197     objerror(so, USER, "bad arguments");
198     src->sflags |= SDISTANT;
199     VCOPY(src->sloc, so->oargs.farg);
200     if (normalize(src->sloc) == 0.0)
201     objerror(so, USER, "zero direction");
202     theta = PI/180.0/2.0 * so->oargs.farg[3];
203     if (theta <= FTINY)
204     objerror(so, USER, "zero size");
205     src->ss2 = 2.0*PI * (1.0 - cos(theta));
206 greg 1.14 /* the following is approximate */
207     src->srad = sqrt(src->ss2/PI);
208     VCOPY(src->snorm, src->sloc);
209     setflatss(src); /* hey, whatever works */
210     src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
211 greg 1.1 }
212    
213    
214 greg 2.9 void
215 greg 1.1 sphsetsrc(src, so) /* set a sphere as a source */
216     register SRCREC *src;
217     register OBJREC *so;
218     {
219 greg 1.14 register int i;
220    
221 greg 1.1 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
222     src->so = so;
223     if (so->oargs.nfargs != 4)
224     objerror(so, USER, "bad # arguments");
225     if (so->oargs.farg[3] <= FTINY)
226     objerror(so, USER, "illegal radius");
227     VCOPY(src->sloc, so->oargs.farg);
228 greg 1.14 src->srad = so->oargs.farg[3];
229     src->ss2 = PI * src->srad * src->srad;
230     for (i = 0; i < 3; i++)
231     src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
232     for (i = 0; i < 3; i++)
233 greg 1.15 src->ss[i][i] = .7236 * so->oargs.farg[3];
234 greg 1.1 }
235    
236    
237 greg 2.9 void
238 greg 1.1 rsetsrc(src, so) /* set a ring (disk) as a source */
239     register SRCREC *src;
240     OBJREC *so;
241     {
242     register CONE *co;
243    
244     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
245     src->so = so;
246     /* get the ring */
247     co = getcone(so, 0);
248     VCOPY(src->sloc, CO_P0(co));
249     if (CO_R0(co) > 0.0)
250     objerror(so, USER, "cannot hit center");
251     src->sflags |= SFLAT;
252     VCOPY(src->snorm, co->ad);
253 greg 1.14 src->srad = CO_R1(co);
254     src->ss2 = PI * src->srad * src->srad;
255     setflatss(src);
256     }
257    
258    
259 greg 2.9 void
260 greg 1.14 cylsetsrc(src, so) /* set a cylinder as a source */
261     register SRCREC *src;
262     OBJREC *so;
263     {
264     register CONE *co;
265     register int i;
266    
267     src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
268     src->so = so;
269     /* get the cylinder */
270     co = getcone(so, 0);
271     if (CO_R0(co) > .2*co->al) /* heuristic constraint */
272     objerror(so, WARNING, "source aspect too small");
273 greg 1.15 src->sflags |= SCYL;
274 greg 1.14 for (i = 0; i < 3; i++)
275     src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
276 greg 1.15 src->srad = .5*co->al;
277 greg 1.14 src->ss2 = 2.*CO_R0(co)*co->al;
278     /* set sampling vectors */
279     for (i = 0; i < 3; i++)
280     src->ss[SU][i] = .5 * co->al * co->ad[i];
281     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
282     for (i = 0; i < 3; i++)
283     if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
284     break;
285     src->ss[SV][i] = 1.0;
286     fcross(src->ss[SW], src->ss[SV], co->ad);
287     normalize(src->ss[SW]);
288     for (i = 0; i < 3; i++)
289 greg 1.15 src->ss[SW][i] *= .8559 * CO_R0(co);
290 greg 1.14 fcross(src->ss[SV], src->ss[SW], co->ad);
291 greg 1.1 }
292    
293    
294     SPOT *
295     makespot(m) /* make a spotlight */
296     register OBJREC *m;
297     {
298     register SPOT *ns;
299    
300 greg 2.5 if ((ns = (SPOT *)m->os) != NULL)
301     return(ns);
302 greg 1.1 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
303     return(NULL);
304     ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
305     VCOPY(ns->aim, m->oargs.farg+4);
306     if ((ns->flen = normalize(ns->aim)) == 0.0)
307     objerror(m, USER, "zero focus vector");
308 greg 2.5 m->os = (char *)ns;
309 greg 1.1 return(ns);
310     }
311    
312    
313 greg 2.9 int
314 greg 2.8 spotout(r, s) /* check if we're outside spot region */
315 greg 2.5 register RAY *r;
316     register SPOT *s;
317     {
318     double d;
319     FVECT vd;
320    
321     if (s == NULL)
322     return(0);
323 greg 2.8 if (s->flen < -FTINY) { /* distant source */
324 greg 2.5 vd[0] = s->aim[0] - r->rorg[0];
325     vd[1] = s->aim[1] - r->rorg[1];
326     vd[2] = s->aim[2] - r->rorg[2];
327     d = DOT(r->rdir,vd);
328     /* wrong side?
329     if (d <= FTINY)
330     return(1); */
331     d = DOT(vd,vd) - d*d;
332     if (PI*d > s->siz)
333     return(1); /* out */
334     return(0); /* OK */
335     }
336     /* local source */
337     if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
338     return(1); /* out */
339     return(0); /* OK */
340     }
341    
342    
343 greg 1.1 double
344     fgetmaxdisk(ocent, op) /* get center and squared radius of face */
345     FVECT ocent;
346     OBJREC *op;
347     {
348     double maxrad2;
349 greg 1.5 double d;
350 greg 1.1 register int i, j;
351     register FACE *f;
352    
353     f = getface(op);
354 greg 1.5 if (f->area == 0.)
355     return(0.);
356 greg 1.1 for (i = 0; i < 3; i++) {
357     ocent[i] = 0.;
358     for (j = 0; j < f->nv; j++)
359     ocent[i] += VERTEX(f,j)[i];
360     ocent[i] /= (double)f->nv;
361     }
362 greg 1.5 d = DOT(ocent,f->norm);
363     for (i = 0; i < 3; i++)
364     ocent[i] += (f->offset - d)*f->norm[i];
365 greg 1.1 maxrad2 = 0.;
366     for (j = 0; j < f->nv; j++) {
367 greg 1.5 d = dist2(VERTEX(f,j), ocent);
368     if (d > maxrad2)
369     maxrad2 = d;
370 greg 1.1 }
371     return(maxrad2);
372     }
373    
374    
375     double
376     rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
377     FVECT ocent;
378     OBJREC *op;
379     {
380     register CONE *co;
381    
382     co = getcone(op, 0);
383     VCOPY(ocent, CO_P0(co));
384     return(CO_R1(co)*CO_R1(co));
385     }
386    
387    
388     double
389     fgetplaneq(nvec, op) /* get plane equation for face */
390     FVECT nvec;
391     OBJREC *op;
392     {
393     register FACE *fo;
394    
395     fo = getface(op);
396     VCOPY(nvec, fo->norm);
397     return(fo->offset);
398     }
399    
400    
401     double
402     rgetplaneq(nvec, op) /* get plane equation for ring */
403     FVECT nvec;
404     OBJREC *op;
405     {
406     register CONE *co;
407    
408     co = getcone(op, 0);
409     VCOPY(nvec, co->ad);
410     return(DOT(nvec, CO_P0(co)));
411 greg 1.4 }
412    
413    
414 greg 2.9 int
415 greg 1.4 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
416     register SPOT *sp1, *sp2;
417     FVECT org;
418     {
419     FVECT cent;
420     double rad2, cos1, cos2;
421    
422     cos1 = 1. - sp1->siz/(2.*PI);
423     cos2 = 1. - sp2->siz/(2.*PI);
424     if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
425     return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
426     sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
427     /* compute and check disks */
428     rad2 = intercircle(cent, sp1->aim, sp2->aim,
429     1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
430     if (rad2 <= FTINY || normalize(cent) == 0.)
431     return(0);
432     VCOPY(sp1->aim, cent);
433     sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
434     return(1);
435     }
436    
437    
438 greg 2.9 int
439 greg 1.4 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
440     register SPOT *sp1, *sp2;
441     FVECT dir;
442     {
443     FVECT cent, c1, c2;
444     double rad2, d;
445     register int i;
446     /* move centers to common plane */
447     d = DOT(sp1->aim, dir);
448     for (i = 0; i < 3; i++)
449     c1[i] = sp1->aim[i] - d*dir[i];
450     d = DOT(sp2->aim, dir);
451     for (i = 0; i < 3; i++)
452     c2[i] = sp2->aim[i] - d*dir[i];
453     /* compute overlap */
454     rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
455     if (rad2 <= FTINY)
456     return(0);
457     VCOPY(sp1->aim, cent);
458     sp1->siz = PI*rad2;
459     return(1);
460     }
461    
462    
463 greg 2.9 int
464 greg 1.4 checkspot(sp, nrm) /* check spotlight for behind source */
465     register SPOT *sp; /* spotlight */
466     FVECT nrm; /* source surface normal */
467     {
468     double d, d1;
469    
470     d = DOT(sp->aim, nrm);
471     if (d > FTINY) /* center in front? */
472 greg 1.8 return(1);
473 greg 1.4 /* else check horizon */
474     d1 = 1. - sp->siz/(2.*PI);
475 greg 1.8 return(1.-FTINY-d*d < d1*d1);
476 greg 1.4 }
477    
478    
479     double
480 greg 1.6 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
481     FVECT oc;
482     OBJREC *op;
483     register SPOT *sp;
484     FVECT pos;
485     {
486     FVECT onorm;
487     double offs, d, dist;
488     register int i;
489    
490     offs = getplaneq(onorm, op);
491     d = -DOT(onorm, sp->aim);
492     if (d >= -FTINY && d <= FTINY)
493     return(0.);
494     dist = (DOT(pos, onorm) - offs)/d;
495     if (dist < 0.)
496     return(0.);
497     for (i = 0; i < 3; i++)
498     oc[i] = pos[i] + dist*sp->aim[i];
499     return(sp->siz*dist*dist/PI/(d*d));
500     }
501    
502    
503     double
504     beamdisk(oc, op, sp, dir) /* intersect beam with object op */
505     FVECT oc;
506     OBJREC *op;
507     register SPOT *sp;
508     FVECT dir;
509     {
510     FVECT onorm;
511     double offs, d, dist;
512     register int i;
513    
514     offs = getplaneq(onorm, op);
515     d = -DOT(onorm, dir);
516     if (d >= -FTINY && d <= FTINY)
517     return(0.);
518     dist = (DOT(sp->aim, onorm) - offs)/d;
519     for (i = 0; i < 3; i++)
520     oc[i] = sp->aim[i] + dist*dir[i];
521     return(sp->siz/PI/(d*d));
522     }
523    
524    
525     double
526 greg 1.4 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
527     FVECT cc; /* midpoint (return value) */
528     FVECT c1, c2; /* circle centers */
529     double r1s, r2s; /* radii squared */
530     {
531     double a2, d2, l;
532     FVECT disp;
533     register int i;
534    
535     for (i = 0; i < 3; i++)
536     disp[i] = c2[i] - c1[i];
537     d2 = DOT(disp,disp);
538     /* circle within overlap? */
539     if (r1s < r2s) {
540     if (r2s >= r1s + d2) {
541     VCOPY(cc, c1);
542     return(r1s);
543     }
544     } else {
545     if (r1s >= r2s + d2) {
546     VCOPY(cc, c2);
547     return(r2s);
548     }
549     }
550     a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
551     /* no overlap? */
552     if (a2 <= 0.)
553     return(0.);
554     /* overlap, compute center */
555     l = sqrt((r1s - a2)/d2);
556     for (i = 0; i < 3; i++)
557     cc[i] = c1[i] + l*disp[i];
558     return(a2);
559 greg 1.1 }