ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.8
Committed: Tue Nov 7 12:40:30 1995 UTC (28 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.7: +2 -3 lines
Log Message:
changed spotlight struct so flen<0 for distant sources

File Contents

# User Rev Content
1 greg 2.7 /* Copyright (c) 1995 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Support routines for source objects and materials
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "source.h"
16    
17     #include "cone.h"
18    
19     #include "face.h"
20    
21 greg 1.14 #define SRCINC 4 /* realloc increment for array */
22 greg 1.1
23     SRCREC *source = NULL; /* our list of sources */
24     int nsources = 0; /* the number of sources */
25    
26     SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
27    
28    
29     initstypes() /* initialize source dispatch table */
30     {
31 greg 1.9 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
32 greg 1.14 extern int fsetsrc(), ssetsrc(), sphsetsrc(), cylsetsrc(), rsetsrc();
33     extern int nopart(), flatpart(), cylpart();
34 greg 1.1 extern double fgetplaneq(), rgetplaneq();
35     extern double fgetmaxdisk(), rgetmaxdisk();
36 greg 1.14 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
37     static SOBJECT ssobj = {ssetsrc, nopart};
38     static SOBJECT sphsobj = {sphsetsrc, nopart};
39     static SOBJECT cylsobj = {cylsetsrc, cylpart};
40     static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
41 greg 1.1
42     sfun[MAT_MIRROR].mf = &mirror_vs;
43 greg 1.9 sfun[MAT_DIRECT1].mf = &direct1_vs;
44     sfun[MAT_DIRECT2].mf = &direct2_vs;
45 greg 1.1 sfun[OBJ_FACE].of = &fsobj;
46     sfun[OBJ_SOURCE].of = &ssobj;
47     sfun[OBJ_SPHERE].of = &sphsobj;
48 greg 1.14 sfun[OBJ_CYLINDER].of = &cylsobj;
49 greg 1.1 sfun[OBJ_RING].of = &rsobj;
50     }
51    
52    
53 greg 1.2 int
54 greg 1.1 newsource() /* allocate new source in our array */
55     {
56     if (nsources == 0)
57 greg 1.13 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
58     else if (nsources%SRCINC == 0)
59 greg 1.1 source = (SRCREC *)realloc((char *)source,
60 greg 1.13 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
61 greg 1.1 if (source == NULL)
62 greg 1.2 return(-1);
63 greg 1.1 source[nsources].sflags = 0;
64     source[nsources].nhits = 1;
65     source[nsources].ntests = 2; /* initial hit probability = 1/2 */
66 greg 1.2 return(nsources++);
67 greg 1.1 }
68    
69    
70 greg 1.14 setflatss(src) /* set sampling for a flat source */
71     register SRCREC *src;
72     {
73     double mult;
74     register int i;
75    
76     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
77     for (i = 0; i < 3; i++)
78     if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
79     break;
80     src->ss[SV][i] = 1.0;
81     fcross(src->ss[SU], src->ss[SV], src->snorm);
82     mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
83     for (i = 0; i < 3; i++)
84     src->ss[SU][i] *= mult;
85     fcross(src->ss[SV], src->snorm, src->ss[SU]);
86     }
87    
88    
89 greg 1.1 fsetsrc(src, so) /* set a face as a source */
90     register SRCREC *src;
91     OBJREC *so;
92     {
93     register FACE *f;
94     register int i, j;
95 greg 1.14 double d;
96 greg 1.1
97     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98     src->so = so;
99     /* get the face */
100     f = getface(so);
101     /* find the center */
102     for (j = 0; j < 3; j++) {
103     src->sloc[j] = 0.0;
104     for (i = 0; i < f->nv; i++)
105     src->sloc[j] += VERTEX(f,i)[j];
106     src->sloc[j] /= (double)f->nv;
107     }
108     if (!inface(src->sloc, f))
109     objerror(so, USER, "cannot hit center");
110     src->sflags |= SFLAT;
111     VCOPY(src->snorm, f->norm);
112     src->ss2 = f->area;
113 greg 1.14 /* find maximum radius */
114     src->srad = 0.;
115     for (i = 0; i < f->nv; i++) {
116     d = dist2(VERTEX(f,i), src->sloc);
117     if (d > src->srad)
118     src->srad = d;
119     }
120     src->srad = sqrt(src->srad);
121     /* compute size vectors */
122 greg 2.7 if (f->nv == 4) /* parallelogram case */
123 greg 1.14 for (j = 0; j < 3; j++) {
124     src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
125     src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
126     }
127     else
128     setflatss(src);
129 greg 1.1 }
130    
131    
132     ssetsrc(src, so) /* set a source as a source */
133     register SRCREC *src;
134     register OBJREC *so;
135     {
136     double theta;
137    
138     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
139     src->so = so;
140     if (so->oargs.nfargs != 4)
141     objerror(so, USER, "bad arguments");
142     src->sflags |= SDISTANT;
143     VCOPY(src->sloc, so->oargs.farg);
144     if (normalize(src->sloc) == 0.0)
145     objerror(so, USER, "zero direction");
146     theta = PI/180.0/2.0 * so->oargs.farg[3];
147     if (theta <= FTINY)
148     objerror(so, USER, "zero size");
149     src->ss2 = 2.0*PI * (1.0 - cos(theta));
150 greg 1.14 /* the following is approximate */
151     src->srad = sqrt(src->ss2/PI);
152     VCOPY(src->snorm, src->sloc);
153     setflatss(src); /* hey, whatever works */
154     src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
155 greg 1.1 }
156    
157    
158     sphsetsrc(src, so) /* set a sphere as a source */
159     register SRCREC *src;
160     register OBJREC *so;
161     {
162 greg 1.14 register int i;
163    
164 greg 1.1 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
165     src->so = so;
166     if (so->oargs.nfargs != 4)
167     objerror(so, USER, "bad # arguments");
168     if (so->oargs.farg[3] <= FTINY)
169     objerror(so, USER, "illegal radius");
170     VCOPY(src->sloc, so->oargs.farg);
171 greg 1.14 src->srad = so->oargs.farg[3];
172     src->ss2 = PI * src->srad * src->srad;
173     for (i = 0; i < 3; i++)
174     src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
175     for (i = 0; i < 3; i++)
176 greg 1.15 src->ss[i][i] = .7236 * so->oargs.farg[3];
177 greg 1.1 }
178    
179    
180     rsetsrc(src, so) /* set a ring (disk) as a source */
181     register SRCREC *src;
182     OBJREC *so;
183     {
184     register CONE *co;
185    
186     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
187     src->so = so;
188     /* get the ring */
189     co = getcone(so, 0);
190     VCOPY(src->sloc, CO_P0(co));
191     if (CO_R0(co) > 0.0)
192     objerror(so, USER, "cannot hit center");
193     src->sflags |= SFLAT;
194     VCOPY(src->snorm, co->ad);
195 greg 1.14 src->srad = CO_R1(co);
196     src->ss2 = PI * src->srad * src->srad;
197     setflatss(src);
198     }
199    
200    
201     cylsetsrc(src, so) /* set a cylinder as a source */
202     register SRCREC *src;
203     OBJREC *so;
204     {
205     register CONE *co;
206     register int i;
207    
208     src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
209     src->so = so;
210     /* get the cylinder */
211     co = getcone(so, 0);
212     if (CO_R0(co) > .2*co->al) /* heuristic constraint */
213     objerror(so, WARNING, "source aspect too small");
214 greg 1.15 src->sflags |= SCYL;
215 greg 1.14 for (i = 0; i < 3; i++)
216     src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
217 greg 1.15 src->srad = .5*co->al;
218 greg 1.14 src->ss2 = 2.*CO_R0(co)*co->al;
219     /* set sampling vectors */
220     for (i = 0; i < 3; i++)
221     src->ss[SU][i] = .5 * co->al * co->ad[i];
222     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
223     for (i = 0; i < 3; i++)
224     if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
225     break;
226     src->ss[SV][i] = 1.0;
227     fcross(src->ss[SW], src->ss[SV], co->ad);
228     normalize(src->ss[SW]);
229     for (i = 0; i < 3; i++)
230 greg 1.15 src->ss[SW][i] *= .8559 * CO_R0(co);
231 greg 1.14 fcross(src->ss[SV], src->ss[SW], co->ad);
232 greg 1.1 }
233    
234    
235     SPOT *
236     makespot(m) /* make a spotlight */
237     register OBJREC *m;
238     {
239     register SPOT *ns;
240    
241 greg 2.5 if ((ns = (SPOT *)m->os) != NULL)
242     return(ns);
243 greg 1.1 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
244     return(NULL);
245     ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
246     VCOPY(ns->aim, m->oargs.farg+4);
247     if ((ns->flen = normalize(ns->aim)) == 0.0)
248     objerror(m, USER, "zero focus vector");
249 greg 2.5 m->os = (char *)ns;
250 greg 1.1 return(ns);
251     }
252    
253    
254 greg 2.8 spotout(r, s) /* check if we're outside spot region */
255 greg 2.5 register RAY *r;
256     register SPOT *s;
257     {
258     double d;
259     FVECT vd;
260    
261     if (s == NULL)
262     return(0);
263 greg 2.8 if (s->flen < -FTINY) { /* distant source */
264 greg 2.5 vd[0] = s->aim[0] - r->rorg[0];
265     vd[1] = s->aim[1] - r->rorg[1];
266     vd[2] = s->aim[2] - r->rorg[2];
267     d = DOT(r->rdir,vd);
268     /* wrong side?
269     if (d <= FTINY)
270     return(1); */
271     d = DOT(vd,vd) - d*d;
272     if (PI*d > s->siz)
273     return(1); /* out */
274     return(0); /* OK */
275     }
276     /* local source */
277     if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
278     return(1); /* out */
279     return(0); /* OK */
280     }
281    
282    
283 greg 1.1 double
284     fgetmaxdisk(ocent, op) /* get center and squared radius of face */
285     FVECT ocent;
286     OBJREC *op;
287     {
288     double maxrad2;
289 greg 1.5 double d;
290 greg 1.1 register int i, j;
291     register FACE *f;
292    
293     f = getface(op);
294 greg 1.5 if (f->area == 0.)
295     return(0.);
296 greg 1.1 for (i = 0; i < 3; i++) {
297     ocent[i] = 0.;
298     for (j = 0; j < f->nv; j++)
299     ocent[i] += VERTEX(f,j)[i];
300     ocent[i] /= (double)f->nv;
301     }
302 greg 1.5 d = DOT(ocent,f->norm);
303     for (i = 0; i < 3; i++)
304     ocent[i] += (f->offset - d)*f->norm[i];
305 greg 1.1 maxrad2 = 0.;
306     for (j = 0; j < f->nv; j++) {
307 greg 1.5 d = dist2(VERTEX(f,j), ocent);
308     if (d > maxrad2)
309     maxrad2 = d;
310 greg 1.1 }
311     return(maxrad2);
312     }
313    
314    
315     double
316     rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
317     FVECT ocent;
318     OBJREC *op;
319     {
320     register CONE *co;
321    
322     co = getcone(op, 0);
323     VCOPY(ocent, CO_P0(co));
324     return(CO_R1(co)*CO_R1(co));
325     }
326    
327    
328     double
329     fgetplaneq(nvec, op) /* get plane equation for face */
330     FVECT nvec;
331     OBJREC *op;
332     {
333     register FACE *fo;
334    
335     fo = getface(op);
336     VCOPY(nvec, fo->norm);
337     return(fo->offset);
338     }
339    
340    
341     double
342     rgetplaneq(nvec, op) /* get plane equation for ring */
343     FVECT nvec;
344     OBJREC *op;
345     {
346     register CONE *co;
347    
348     co = getcone(op, 0);
349     VCOPY(nvec, co->ad);
350     return(DOT(nvec, CO_P0(co)));
351 greg 1.4 }
352    
353    
354     commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
355     register SPOT *sp1, *sp2;
356     FVECT org;
357     {
358     FVECT cent;
359     double rad2, cos1, cos2;
360    
361     cos1 = 1. - sp1->siz/(2.*PI);
362     cos2 = 1. - sp2->siz/(2.*PI);
363     if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
364     return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
365     sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
366     /* compute and check disks */
367     rad2 = intercircle(cent, sp1->aim, sp2->aim,
368     1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
369     if (rad2 <= FTINY || normalize(cent) == 0.)
370     return(0);
371     VCOPY(sp1->aim, cent);
372     sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
373     return(1);
374     }
375    
376    
377     commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
378     register SPOT *sp1, *sp2;
379     FVECT dir;
380     {
381     FVECT cent, c1, c2;
382     double rad2, d;
383     register int i;
384     /* move centers to common plane */
385     d = DOT(sp1->aim, dir);
386     for (i = 0; i < 3; i++)
387     c1[i] = sp1->aim[i] - d*dir[i];
388     d = DOT(sp2->aim, dir);
389     for (i = 0; i < 3; i++)
390     c2[i] = sp2->aim[i] - d*dir[i];
391     /* compute overlap */
392     rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
393     if (rad2 <= FTINY)
394     return(0);
395     VCOPY(sp1->aim, cent);
396     sp1->siz = PI*rad2;
397     return(1);
398     }
399    
400    
401     checkspot(sp, nrm) /* check spotlight for behind source */
402     register SPOT *sp; /* spotlight */
403     FVECT nrm; /* source surface normal */
404     {
405     double d, d1;
406    
407     d = DOT(sp->aim, nrm);
408     if (d > FTINY) /* center in front? */
409 greg 1.8 return(1);
410 greg 1.4 /* else check horizon */
411     d1 = 1. - sp->siz/(2.*PI);
412 greg 1.8 return(1.-FTINY-d*d < d1*d1);
413 greg 1.4 }
414    
415    
416     double
417 greg 1.6 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
418     FVECT oc;
419     OBJREC *op;
420     register SPOT *sp;
421     FVECT pos;
422     {
423     FVECT onorm;
424     double offs, d, dist;
425     register int i;
426    
427     offs = getplaneq(onorm, op);
428     d = -DOT(onorm, sp->aim);
429     if (d >= -FTINY && d <= FTINY)
430     return(0.);
431     dist = (DOT(pos, onorm) - offs)/d;
432     if (dist < 0.)
433     return(0.);
434     for (i = 0; i < 3; i++)
435     oc[i] = pos[i] + dist*sp->aim[i];
436     return(sp->siz*dist*dist/PI/(d*d));
437     }
438    
439    
440     double
441     beamdisk(oc, op, sp, dir) /* intersect beam with object op */
442     FVECT oc;
443     OBJREC *op;
444     register SPOT *sp;
445     FVECT dir;
446     {
447     FVECT onorm;
448     double offs, d, dist;
449     register int i;
450    
451     offs = getplaneq(onorm, op);
452     d = -DOT(onorm, dir);
453     if (d >= -FTINY && d <= FTINY)
454     return(0.);
455     dist = (DOT(sp->aim, onorm) - offs)/d;
456     for (i = 0; i < 3; i++)
457     oc[i] = sp->aim[i] + dist*dir[i];
458     return(sp->siz/PI/(d*d));
459     }
460    
461    
462     double
463 greg 1.4 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
464     FVECT cc; /* midpoint (return value) */
465     FVECT c1, c2; /* circle centers */
466     double r1s, r2s; /* radii squared */
467     {
468     double a2, d2, l;
469     FVECT disp;
470     register int i;
471    
472     for (i = 0; i < 3; i++)
473     disp[i] = c2[i] - c1[i];
474     d2 = DOT(disp,disp);
475     /* circle within overlap? */
476     if (r1s < r2s) {
477     if (r2s >= r1s + d2) {
478     VCOPY(cc, c1);
479     return(r1s);
480     }
481     } else {
482     if (r1s >= r2s + d2) {
483     VCOPY(cc, c2);
484     return(r2s);
485     }
486     }
487     a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
488     /* no overlap? */
489     if (a2 <= 0.)
490     return(0.);
491     /* overlap, compute center */
492     l = sqrt((r1s - a2)/d2);
493     for (i = 0; i < 3; i++)
494     cc[i] = c1[i] + l*disp[i];
495     return(a2);
496 greg 1.1 }