ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.7
Committed: Thu Aug 24 20:56:08 1995 UTC (28 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.6: +2 -3 lines
Log Message:
removed unnecessary test for last vertex == first vertex

File Contents

# User Rev Content
1 greg 2.7 /* Copyright (c) 1995 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Support routines for source objects and materials
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "source.h"
16    
17     #include "cone.h"
18    
19     #include "face.h"
20    
21 greg 1.14 #define SRCINC 4 /* realloc increment for array */
22 greg 1.1
23     SRCREC *source = NULL; /* our list of sources */
24     int nsources = 0; /* the number of sources */
25    
26     SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
27    
28    
29     initstypes() /* initialize source dispatch table */
30     {
31 greg 1.9 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
32 greg 1.14 extern int fsetsrc(), ssetsrc(), sphsetsrc(), cylsetsrc(), rsetsrc();
33     extern int nopart(), flatpart(), cylpart();
34 greg 1.1 extern double fgetplaneq(), rgetplaneq();
35     extern double fgetmaxdisk(), rgetmaxdisk();
36 greg 1.14 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
37     static SOBJECT ssobj = {ssetsrc, nopart};
38     static SOBJECT sphsobj = {sphsetsrc, nopart};
39     static SOBJECT cylsobj = {cylsetsrc, cylpart};
40     static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
41 greg 1.1
42     sfun[MAT_MIRROR].mf = &mirror_vs;
43 greg 1.9 sfun[MAT_DIRECT1].mf = &direct1_vs;
44     sfun[MAT_DIRECT2].mf = &direct2_vs;
45 greg 1.1 sfun[OBJ_FACE].of = &fsobj;
46     sfun[OBJ_SOURCE].of = &ssobj;
47     sfun[OBJ_SPHERE].of = &sphsobj;
48 greg 1.14 sfun[OBJ_CYLINDER].of = &cylsobj;
49 greg 1.1 sfun[OBJ_RING].of = &rsobj;
50     }
51    
52    
53 greg 1.2 int
54 greg 1.1 newsource() /* allocate new source in our array */
55     {
56     if (nsources == 0)
57 greg 1.13 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
58     else if (nsources%SRCINC == 0)
59 greg 1.1 source = (SRCREC *)realloc((char *)source,
60 greg 1.13 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
61 greg 1.1 if (source == NULL)
62 greg 1.2 return(-1);
63 greg 1.1 source[nsources].sflags = 0;
64     source[nsources].nhits = 1;
65     source[nsources].ntests = 2; /* initial hit probability = 1/2 */
66 greg 1.2 return(nsources++);
67 greg 1.1 }
68    
69    
70 greg 1.14 setflatss(src) /* set sampling for a flat source */
71     register SRCREC *src;
72     {
73     double mult;
74     register int i;
75    
76     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
77     for (i = 0; i < 3; i++)
78     if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
79     break;
80     src->ss[SV][i] = 1.0;
81     fcross(src->ss[SU], src->ss[SV], src->snorm);
82     mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
83     for (i = 0; i < 3; i++)
84     src->ss[SU][i] *= mult;
85     fcross(src->ss[SV], src->snorm, src->ss[SU]);
86     }
87    
88    
89 greg 1.1 fsetsrc(src, so) /* set a face as a source */
90     register SRCREC *src;
91     OBJREC *so;
92     {
93     register FACE *f;
94     register int i, j;
95 greg 1.14 double d;
96 greg 1.1
97     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98     src->so = so;
99     /* get the face */
100     f = getface(so);
101     /* find the center */
102     for (j = 0; j < 3; j++) {
103     src->sloc[j] = 0.0;
104     for (i = 0; i < f->nv; i++)
105     src->sloc[j] += VERTEX(f,i)[j];
106     src->sloc[j] /= (double)f->nv;
107     }
108     if (!inface(src->sloc, f))
109     objerror(so, USER, "cannot hit center");
110     src->sflags |= SFLAT;
111     VCOPY(src->snorm, f->norm);
112     src->ss2 = f->area;
113 greg 1.14 /* find maximum radius */
114     src->srad = 0.;
115     for (i = 0; i < f->nv; i++) {
116     d = dist2(VERTEX(f,i), src->sloc);
117     if (d > src->srad)
118     src->srad = d;
119     }
120     src->srad = sqrt(src->srad);
121     /* compute size vectors */
122 greg 2.7 if (f->nv == 4) /* parallelogram case */
123 greg 1.14 for (j = 0; j < 3; j++) {
124     src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
125     src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
126     }
127     else
128     setflatss(src);
129 greg 1.1 }
130    
131    
132     ssetsrc(src, so) /* set a source as a source */
133     register SRCREC *src;
134     register OBJREC *so;
135     {
136     double theta;
137    
138     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
139     src->so = so;
140     if (so->oargs.nfargs != 4)
141     objerror(so, USER, "bad arguments");
142     src->sflags |= SDISTANT;
143     VCOPY(src->sloc, so->oargs.farg);
144     if (normalize(src->sloc) == 0.0)
145     objerror(so, USER, "zero direction");
146     theta = PI/180.0/2.0 * so->oargs.farg[3];
147     if (theta <= FTINY)
148     objerror(so, USER, "zero size");
149     src->ss2 = 2.0*PI * (1.0 - cos(theta));
150 greg 1.14 /* the following is approximate */
151     src->srad = sqrt(src->ss2/PI);
152     VCOPY(src->snorm, src->sloc);
153     setflatss(src); /* hey, whatever works */
154     src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
155 greg 1.1 }
156    
157    
158     sphsetsrc(src, so) /* set a sphere as a source */
159     register SRCREC *src;
160     register OBJREC *so;
161     {
162 greg 1.14 register int i;
163    
164 greg 1.1 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
165     src->so = so;
166     if (so->oargs.nfargs != 4)
167     objerror(so, USER, "bad # arguments");
168     if (so->oargs.farg[3] <= FTINY)
169     objerror(so, USER, "illegal radius");
170     VCOPY(src->sloc, so->oargs.farg);
171 greg 1.14 src->srad = so->oargs.farg[3];
172     src->ss2 = PI * src->srad * src->srad;
173     for (i = 0; i < 3; i++)
174     src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
175     for (i = 0; i < 3; i++)
176 greg 1.15 src->ss[i][i] = .7236 * so->oargs.farg[3];
177 greg 1.1 }
178    
179    
180     rsetsrc(src, so) /* set a ring (disk) as a source */
181     register SRCREC *src;
182     OBJREC *so;
183     {
184     register CONE *co;
185    
186     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
187     src->so = so;
188     /* get the ring */
189     co = getcone(so, 0);
190     VCOPY(src->sloc, CO_P0(co));
191     if (CO_R0(co) > 0.0)
192     objerror(so, USER, "cannot hit center");
193     src->sflags |= SFLAT;
194     VCOPY(src->snorm, co->ad);
195 greg 1.14 src->srad = CO_R1(co);
196     src->ss2 = PI * src->srad * src->srad;
197     setflatss(src);
198     }
199    
200    
201     cylsetsrc(src, so) /* set a cylinder as a source */
202     register SRCREC *src;
203     OBJREC *so;
204     {
205     register CONE *co;
206     register int i;
207    
208     src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
209     src->so = so;
210     /* get the cylinder */
211     co = getcone(so, 0);
212     if (CO_R0(co) > .2*co->al) /* heuristic constraint */
213     objerror(so, WARNING, "source aspect too small");
214 greg 1.15 src->sflags |= SCYL;
215 greg 1.14 for (i = 0; i < 3; i++)
216     src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
217 greg 1.15 src->srad = .5*co->al;
218 greg 1.14 src->ss2 = 2.*CO_R0(co)*co->al;
219     /* set sampling vectors */
220     for (i = 0; i < 3; i++)
221     src->ss[SU][i] = .5 * co->al * co->ad[i];
222     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
223     for (i = 0; i < 3; i++)
224     if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
225     break;
226     src->ss[SV][i] = 1.0;
227     fcross(src->ss[SW], src->ss[SV], co->ad);
228     normalize(src->ss[SW]);
229     for (i = 0; i < 3; i++)
230 greg 1.15 src->ss[SW][i] *= .8559 * CO_R0(co);
231 greg 1.14 fcross(src->ss[SV], src->ss[SW], co->ad);
232 greg 1.1 }
233    
234    
235     SPOT *
236     makespot(m) /* make a spotlight */
237     register OBJREC *m;
238     {
239     register SPOT *ns;
240    
241 greg 2.5 if ((ns = (SPOT *)m->os) != NULL)
242     return(ns);
243 greg 1.1 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
244     return(NULL);
245     ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
246     VCOPY(ns->aim, m->oargs.farg+4);
247     if ((ns->flen = normalize(ns->aim)) == 0.0)
248     objerror(m, USER, "zero focus vector");
249 greg 2.5 m->os = (char *)ns;
250 greg 1.1 return(ns);
251     }
252    
253    
254 greg 2.5 spotout(r, s, dist) /* check if we're outside spot region */
255     register RAY *r;
256     register SPOT *s;
257     int dist;
258     {
259     double d;
260     FVECT vd;
261    
262     if (s == NULL)
263     return(0);
264     if (dist) { /* distant source */
265     vd[0] = s->aim[0] - r->rorg[0];
266     vd[1] = s->aim[1] - r->rorg[1];
267     vd[2] = s->aim[2] - r->rorg[2];
268     d = DOT(r->rdir,vd);
269     /* wrong side?
270     if (d <= FTINY)
271     return(1); */
272     d = DOT(vd,vd) - d*d;
273     if (PI*d > s->siz)
274     return(1); /* out */
275     return(0); /* OK */
276     }
277     /* local source */
278     if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
279     return(1); /* out */
280     return(0); /* OK */
281     }
282    
283    
284 greg 1.1 double
285     fgetmaxdisk(ocent, op) /* get center and squared radius of face */
286     FVECT ocent;
287     OBJREC *op;
288     {
289     double maxrad2;
290 greg 1.5 double d;
291 greg 1.1 register int i, j;
292     register FACE *f;
293    
294     f = getface(op);
295 greg 1.5 if (f->area == 0.)
296     return(0.);
297 greg 1.1 for (i = 0; i < 3; i++) {
298     ocent[i] = 0.;
299     for (j = 0; j < f->nv; j++)
300     ocent[i] += VERTEX(f,j)[i];
301     ocent[i] /= (double)f->nv;
302     }
303 greg 1.5 d = DOT(ocent,f->norm);
304     for (i = 0; i < 3; i++)
305     ocent[i] += (f->offset - d)*f->norm[i];
306 greg 1.1 maxrad2 = 0.;
307     for (j = 0; j < f->nv; j++) {
308 greg 1.5 d = dist2(VERTEX(f,j), ocent);
309     if (d > maxrad2)
310     maxrad2 = d;
311 greg 1.1 }
312     return(maxrad2);
313     }
314    
315    
316     double
317     rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
318     FVECT ocent;
319     OBJREC *op;
320     {
321     register CONE *co;
322    
323     co = getcone(op, 0);
324     VCOPY(ocent, CO_P0(co));
325     return(CO_R1(co)*CO_R1(co));
326     }
327    
328    
329     double
330     fgetplaneq(nvec, op) /* get plane equation for face */
331     FVECT nvec;
332     OBJREC *op;
333     {
334     register FACE *fo;
335    
336     fo = getface(op);
337     VCOPY(nvec, fo->norm);
338     return(fo->offset);
339     }
340    
341    
342     double
343     rgetplaneq(nvec, op) /* get plane equation for ring */
344     FVECT nvec;
345     OBJREC *op;
346     {
347     register CONE *co;
348    
349     co = getcone(op, 0);
350     VCOPY(nvec, co->ad);
351     return(DOT(nvec, CO_P0(co)));
352 greg 1.4 }
353    
354    
355     commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
356     register SPOT *sp1, *sp2;
357     FVECT org;
358     {
359     FVECT cent;
360     double rad2, cos1, cos2;
361    
362     cos1 = 1. - sp1->siz/(2.*PI);
363     cos2 = 1. - sp2->siz/(2.*PI);
364     if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
365     return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
366     sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
367     /* compute and check disks */
368     rad2 = intercircle(cent, sp1->aim, sp2->aim,
369     1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
370     if (rad2 <= FTINY || normalize(cent) == 0.)
371     return(0);
372     VCOPY(sp1->aim, cent);
373     sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
374     return(1);
375     }
376    
377    
378     commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
379     register SPOT *sp1, *sp2;
380     FVECT dir;
381     {
382     FVECT cent, c1, c2;
383     double rad2, d;
384     register int i;
385     /* move centers to common plane */
386     d = DOT(sp1->aim, dir);
387     for (i = 0; i < 3; i++)
388     c1[i] = sp1->aim[i] - d*dir[i];
389     d = DOT(sp2->aim, dir);
390     for (i = 0; i < 3; i++)
391     c2[i] = sp2->aim[i] - d*dir[i];
392     /* compute overlap */
393     rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
394     if (rad2 <= FTINY)
395     return(0);
396     VCOPY(sp1->aim, cent);
397     sp1->siz = PI*rad2;
398     return(1);
399     }
400    
401    
402     checkspot(sp, nrm) /* check spotlight for behind source */
403     register SPOT *sp; /* spotlight */
404     FVECT nrm; /* source surface normal */
405     {
406     double d, d1;
407    
408     d = DOT(sp->aim, nrm);
409     if (d > FTINY) /* center in front? */
410 greg 1.8 return(1);
411 greg 1.4 /* else check horizon */
412     d1 = 1. - sp->siz/(2.*PI);
413 greg 1.8 return(1.-FTINY-d*d < d1*d1);
414 greg 1.4 }
415    
416    
417     double
418 greg 1.6 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
419     FVECT oc;
420     OBJREC *op;
421     register SPOT *sp;
422     FVECT pos;
423     {
424     FVECT onorm;
425     double offs, d, dist;
426     register int i;
427    
428     offs = getplaneq(onorm, op);
429     d = -DOT(onorm, sp->aim);
430     if (d >= -FTINY && d <= FTINY)
431     return(0.);
432     dist = (DOT(pos, onorm) - offs)/d;
433     if (dist < 0.)
434     return(0.);
435     for (i = 0; i < 3; i++)
436     oc[i] = pos[i] + dist*sp->aim[i];
437     return(sp->siz*dist*dist/PI/(d*d));
438     }
439    
440    
441     double
442     beamdisk(oc, op, sp, dir) /* intersect beam with object op */
443     FVECT oc;
444     OBJREC *op;
445     register SPOT *sp;
446     FVECT dir;
447     {
448     FVECT onorm;
449     double offs, d, dist;
450     register int i;
451    
452     offs = getplaneq(onorm, op);
453     d = -DOT(onorm, dir);
454     if (d >= -FTINY && d <= FTINY)
455     return(0.);
456     dist = (DOT(sp->aim, onorm) - offs)/d;
457     for (i = 0; i < 3; i++)
458     oc[i] = sp->aim[i] + dist*dir[i];
459     return(sp->siz/PI/(d*d));
460     }
461    
462    
463     double
464 greg 1.4 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
465     FVECT cc; /* midpoint (return value) */
466     FVECT c1, c2; /* circle centers */
467     double r1s, r2s; /* radii squared */
468     {
469     double a2, d2, l;
470     FVECT disp;
471     register int i;
472    
473     for (i = 0; i < 3; i++)
474     disp[i] = c2[i] - c1[i];
475     d2 = DOT(disp,disp);
476     /* circle within overlap? */
477     if (r1s < r2s) {
478     if (r2s >= r1s + d2) {
479     VCOPY(cc, c1);
480     return(r1s);
481     }
482     } else {
483     if (r1s >= r2s + d2) {
484     VCOPY(cc, c2);
485     return(r2s);
486     }
487     }
488     a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
489     /* no overlap? */
490     if (a2 <= 0.)
491     return(0.);
492     /* overlap, compute center */
493     l = sqrt((r1s - a2)/d2);
494     for (i = 0; i < 3; i++)
495     cc[i] = c1[i] + l*disp[i];
496     return(a2);
497 greg 1.1 }