ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.6
Committed: Fri Aug 28 15:10:47 1992 UTC (31 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.5: +0 -35 lines
Log Message:
moved sourcehit() from srcsupp.c back to source.c

File Contents

# User Rev Content
1 greg 2.2 /* Copyright (c) 1992 Regents of the University of California */
2 greg 1.1
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Support routines for source objects and materials
9     */
10    
11     #include "ray.h"
12    
13     #include "otypes.h"
14    
15     #include "source.h"
16    
17     #include "cone.h"
18    
19     #include "face.h"
20    
21 greg 1.14 #define SRCINC 4 /* realloc increment for array */
22 greg 1.1
23     SRCREC *source = NULL; /* our list of sources */
24     int nsources = 0; /* the number of sources */
25    
26     SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
27    
28    
29     initstypes() /* initialize source dispatch table */
30     {
31 greg 1.9 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
32 greg 1.14 extern int fsetsrc(), ssetsrc(), sphsetsrc(), cylsetsrc(), rsetsrc();
33     extern int nopart(), flatpart(), cylpart();
34 greg 1.1 extern double fgetplaneq(), rgetplaneq();
35     extern double fgetmaxdisk(), rgetmaxdisk();
36 greg 1.14 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
37     static SOBJECT ssobj = {ssetsrc, nopart};
38     static SOBJECT sphsobj = {sphsetsrc, nopart};
39     static SOBJECT cylsobj = {cylsetsrc, cylpart};
40     static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
41 greg 1.1
42     sfun[MAT_MIRROR].mf = &mirror_vs;
43 greg 1.9 sfun[MAT_DIRECT1].mf = &direct1_vs;
44     sfun[MAT_DIRECT2].mf = &direct2_vs;
45 greg 1.1 sfun[OBJ_FACE].of = &fsobj;
46     sfun[OBJ_SOURCE].of = &ssobj;
47     sfun[OBJ_SPHERE].of = &sphsobj;
48 greg 1.14 sfun[OBJ_CYLINDER].of = &cylsobj;
49 greg 1.1 sfun[OBJ_RING].of = &rsobj;
50     }
51    
52    
53 greg 1.2 int
54 greg 1.1 newsource() /* allocate new source in our array */
55     {
56     if (nsources == 0)
57 greg 1.13 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
58     else if (nsources%SRCINC == 0)
59 greg 1.1 source = (SRCREC *)realloc((char *)source,
60 greg 1.13 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
61 greg 1.1 if (source == NULL)
62 greg 1.2 return(-1);
63 greg 1.1 source[nsources].sflags = 0;
64     source[nsources].nhits = 1;
65     source[nsources].ntests = 2; /* initial hit probability = 1/2 */
66 greg 1.2 return(nsources++);
67 greg 1.1 }
68    
69    
70 greg 1.14 setflatss(src) /* set sampling for a flat source */
71     register SRCREC *src;
72     {
73     double mult;
74     register int i;
75    
76     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
77     for (i = 0; i < 3; i++)
78     if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
79     break;
80     src->ss[SV][i] = 1.0;
81     fcross(src->ss[SU], src->ss[SV], src->snorm);
82     mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
83     for (i = 0; i < 3; i++)
84     src->ss[SU][i] *= mult;
85     fcross(src->ss[SV], src->snorm, src->ss[SU]);
86     }
87    
88    
89 greg 1.1 fsetsrc(src, so) /* set a face as a source */
90     register SRCREC *src;
91     OBJREC *so;
92     {
93     register FACE *f;
94     register int i, j;
95 greg 1.14 double d;
96 greg 1.1
97     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98     src->so = so;
99     /* get the face */
100     f = getface(so);
101     /* find the center */
102     for (j = 0; j < 3; j++) {
103     src->sloc[j] = 0.0;
104     for (i = 0; i < f->nv; i++)
105     src->sloc[j] += VERTEX(f,i)[j];
106     src->sloc[j] /= (double)f->nv;
107     }
108     if (!inface(src->sloc, f))
109     objerror(so, USER, "cannot hit center");
110     src->sflags |= SFLAT;
111     VCOPY(src->snorm, f->norm);
112     src->ss2 = f->area;
113 greg 1.14 /* find maximum radius */
114     src->srad = 0.;
115     for (i = 0; i < f->nv; i++) {
116     d = dist2(VERTEX(f,i), src->sloc);
117     if (d > src->srad)
118     src->srad = d;
119     }
120     src->srad = sqrt(src->srad);
121     /* compute size vectors */
122     if (f->nv == 4 || (f->nv == 5 && /* parallelogram case */
123     dist2(VERTEX(f,0),VERTEX(f,4)) <= FTINY*FTINY))
124     for (j = 0; j < 3; j++) {
125     src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
126     src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
127     }
128     else
129     setflatss(src);
130 greg 1.1 }
131    
132    
133     ssetsrc(src, so) /* set a source as a source */
134     register SRCREC *src;
135     register OBJREC *so;
136     {
137     double theta;
138    
139     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
140     src->so = so;
141     if (so->oargs.nfargs != 4)
142     objerror(so, USER, "bad arguments");
143     src->sflags |= SDISTANT;
144     VCOPY(src->sloc, so->oargs.farg);
145     if (normalize(src->sloc) == 0.0)
146     objerror(so, USER, "zero direction");
147     theta = PI/180.0/2.0 * so->oargs.farg[3];
148     if (theta <= FTINY)
149     objerror(so, USER, "zero size");
150     src->ss2 = 2.0*PI * (1.0 - cos(theta));
151 greg 1.14 /* the following is approximate */
152     src->srad = sqrt(src->ss2/PI);
153     VCOPY(src->snorm, src->sloc);
154     setflatss(src); /* hey, whatever works */
155     src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
156 greg 1.1 }
157    
158    
159     sphsetsrc(src, so) /* set a sphere as a source */
160     register SRCREC *src;
161     register OBJREC *so;
162     {
163 greg 1.14 register int i;
164    
165 greg 1.1 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
166     src->so = so;
167     if (so->oargs.nfargs != 4)
168     objerror(so, USER, "bad # arguments");
169     if (so->oargs.farg[3] <= FTINY)
170     objerror(so, USER, "illegal radius");
171     VCOPY(src->sloc, so->oargs.farg);
172 greg 1.14 src->srad = so->oargs.farg[3];
173     src->ss2 = PI * src->srad * src->srad;
174     for (i = 0; i < 3; i++)
175     src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
176     for (i = 0; i < 3; i++)
177 greg 1.15 src->ss[i][i] = .7236 * so->oargs.farg[3];
178 greg 1.1 }
179    
180    
181     rsetsrc(src, so) /* set a ring (disk) as a source */
182     register SRCREC *src;
183     OBJREC *so;
184     {
185     register CONE *co;
186    
187     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
188     src->so = so;
189     /* get the ring */
190     co = getcone(so, 0);
191     VCOPY(src->sloc, CO_P0(co));
192     if (CO_R0(co) > 0.0)
193     objerror(so, USER, "cannot hit center");
194     src->sflags |= SFLAT;
195     VCOPY(src->snorm, co->ad);
196 greg 1.14 src->srad = CO_R1(co);
197     src->ss2 = PI * src->srad * src->srad;
198     setflatss(src);
199     }
200    
201    
202     cylsetsrc(src, so) /* set a cylinder as a source */
203     register SRCREC *src;
204     OBJREC *so;
205     {
206     register CONE *co;
207     register int i;
208    
209     src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
210     src->so = so;
211     /* get the cylinder */
212     co = getcone(so, 0);
213     if (CO_R0(co) > .2*co->al) /* heuristic constraint */
214     objerror(so, WARNING, "source aspect too small");
215 greg 1.15 src->sflags |= SCYL;
216 greg 1.14 for (i = 0; i < 3; i++)
217     src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
218 greg 1.15 src->srad = .5*co->al;
219 greg 1.14 src->ss2 = 2.*CO_R0(co)*co->al;
220     /* set sampling vectors */
221     for (i = 0; i < 3; i++)
222     src->ss[SU][i] = .5 * co->al * co->ad[i];
223     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
224     for (i = 0; i < 3; i++)
225     if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
226     break;
227     src->ss[SV][i] = 1.0;
228     fcross(src->ss[SW], src->ss[SV], co->ad);
229     normalize(src->ss[SW]);
230     for (i = 0; i < 3; i++)
231 greg 1.15 src->ss[SW][i] *= .8559 * CO_R0(co);
232 greg 1.14 fcross(src->ss[SV], src->ss[SW], co->ad);
233 greg 1.1 }
234    
235    
236     SPOT *
237     makespot(m) /* make a spotlight */
238     register OBJREC *m;
239     {
240     register SPOT *ns;
241    
242 greg 2.5 if ((ns = (SPOT *)m->os) != NULL)
243     return(ns);
244 greg 1.1 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
245     return(NULL);
246     ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
247     VCOPY(ns->aim, m->oargs.farg+4);
248     if ((ns->flen = normalize(ns->aim)) == 0.0)
249     objerror(m, USER, "zero focus vector");
250 greg 2.5 m->os = (char *)ns;
251 greg 1.1 return(ns);
252     }
253    
254    
255 greg 2.5 spotout(r, s, dist) /* check if we're outside spot region */
256     register RAY *r;
257     register SPOT *s;
258     int dist;
259     {
260     double d;
261     FVECT vd;
262    
263     if (s == NULL)
264     return(0);
265     if (dist) { /* distant source */
266     vd[0] = s->aim[0] - r->rorg[0];
267     vd[1] = s->aim[1] - r->rorg[1];
268     vd[2] = s->aim[2] - r->rorg[2];
269     d = DOT(r->rdir,vd);
270     /* wrong side?
271     if (d <= FTINY)
272     return(1); */
273     d = DOT(vd,vd) - d*d;
274     if (PI*d > s->siz)
275     return(1); /* out */
276     return(0); /* OK */
277     }
278     /* local source */
279     if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
280     return(1); /* out */
281     return(0); /* OK */
282     }
283    
284    
285 greg 1.1 double
286     fgetmaxdisk(ocent, op) /* get center and squared radius of face */
287     FVECT ocent;
288     OBJREC *op;
289     {
290     double maxrad2;
291 greg 1.5 double d;
292 greg 1.1 register int i, j;
293     register FACE *f;
294    
295     f = getface(op);
296 greg 1.5 if (f->area == 0.)
297     return(0.);
298 greg 1.1 for (i = 0; i < 3; i++) {
299     ocent[i] = 0.;
300     for (j = 0; j < f->nv; j++)
301     ocent[i] += VERTEX(f,j)[i];
302     ocent[i] /= (double)f->nv;
303     }
304 greg 1.5 d = DOT(ocent,f->norm);
305     for (i = 0; i < 3; i++)
306     ocent[i] += (f->offset - d)*f->norm[i];
307 greg 1.1 maxrad2 = 0.;
308     for (j = 0; j < f->nv; j++) {
309 greg 1.5 d = dist2(VERTEX(f,j), ocent);
310     if (d > maxrad2)
311     maxrad2 = d;
312 greg 1.1 }
313     return(maxrad2);
314     }
315    
316    
317     double
318     rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
319     FVECT ocent;
320     OBJREC *op;
321     {
322     register CONE *co;
323    
324     co = getcone(op, 0);
325     VCOPY(ocent, CO_P0(co));
326     return(CO_R1(co)*CO_R1(co));
327     }
328    
329    
330     double
331     fgetplaneq(nvec, op) /* get plane equation for face */
332     FVECT nvec;
333     OBJREC *op;
334     {
335     register FACE *fo;
336    
337     fo = getface(op);
338     VCOPY(nvec, fo->norm);
339     return(fo->offset);
340     }
341    
342    
343     double
344     rgetplaneq(nvec, op) /* get plane equation for ring */
345     FVECT nvec;
346     OBJREC *op;
347     {
348     register CONE *co;
349    
350     co = getcone(op, 0);
351     VCOPY(nvec, co->ad);
352     return(DOT(nvec, CO_P0(co)));
353 greg 1.4 }
354    
355    
356     commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
357     register SPOT *sp1, *sp2;
358     FVECT org;
359     {
360     FVECT cent;
361     double rad2, cos1, cos2;
362    
363     cos1 = 1. - sp1->siz/(2.*PI);
364     cos2 = 1. - sp2->siz/(2.*PI);
365     if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
366     return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
367     sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
368     /* compute and check disks */
369     rad2 = intercircle(cent, sp1->aim, sp2->aim,
370     1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
371     if (rad2 <= FTINY || normalize(cent) == 0.)
372     return(0);
373     VCOPY(sp1->aim, cent);
374     sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
375     return(1);
376     }
377    
378    
379     commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
380     register SPOT *sp1, *sp2;
381     FVECT dir;
382     {
383     FVECT cent, c1, c2;
384     double rad2, d;
385     register int i;
386     /* move centers to common plane */
387     d = DOT(sp1->aim, dir);
388     for (i = 0; i < 3; i++)
389     c1[i] = sp1->aim[i] - d*dir[i];
390     d = DOT(sp2->aim, dir);
391     for (i = 0; i < 3; i++)
392     c2[i] = sp2->aim[i] - d*dir[i];
393     /* compute overlap */
394     rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
395     if (rad2 <= FTINY)
396     return(0);
397     VCOPY(sp1->aim, cent);
398     sp1->siz = PI*rad2;
399     return(1);
400     }
401    
402    
403     checkspot(sp, nrm) /* check spotlight for behind source */
404     register SPOT *sp; /* spotlight */
405     FVECT nrm; /* source surface normal */
406     {
407     double d, d1;
408    
409     d = DOT(sp->aim, nrm);
410     if (d > FTINY) /* center in front? */
411 greg 1.8 return(1);
412 greg 1.4 /* else check horizon */
413     d1 = 1. - sp->siz/(2.*PI);
414 greg 1.8 return(1.-FTINY-d*d < d1*d1);
415 greg 1.4 }
416    
417    
418     double
419 greg 1.6 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
420     FVECT oc;
421     OBJREC *op;
422     register SPOT *sp;
423     FVECT pos;
424     {
425     FVECT onorm;
426     double offs, d, dist;
427     register int i;
428    
429     offs = getplaneq(onorm, op);
430     d = -DOT(onorm, sp->aim);
431     if (d >= -FTINY && d <= FTINY)
432     return(0.);
433     dist = (DOT(pos, onorm) - offs)/d;
434     if (dist < 0.)
435     return(0.);
436     for (i = 0; i < 3; i++)
437     oc[i] = pos[i] + dist*sp->aim[i];
438     return(sp->siz*dist*dist/PI/(d*d));
439     }
440    
441    
442     double
443     beamdisk(oc, op, sp, dir) /* intersect beam with object op */
444     FVECT oc;
445     OBJREC *op;
446     register SPOT *sp;
447     FVECT dir;
448     {
449     FVECT onorm;
450     double offs, d, dist;
451     register int i;
452    
453     offs = getplaneq(onorm, op);
454     d = -DOT(onorm, dir);
455     if (d >= -FTINY && d <= FTINY)
456     return(0.);
457     dist = (DOT(sp->aim, onorm) - offs)/d;
458     for (i = 0; i < 3; i++)
459     oc[i] = sp->aim[i] + dist*dir[i];
460     return(sp->siz/PI/(d*d));
461     }
462    
463    
464     double
465 greg 1.4 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
466     FVECT cc; /* midpoint (return value) */
467     FVECT c1, c2; /* circle centers */
468     double r1s, r2s; /* radii squared */
469     {
470     double a2, d2, l;
471     FVECT disp;
472     register int i;
473    
474     for (i = 0; i < 3; i++)
475     disp[i] = c2[i] - c1[i];
476     d2 = DOT(disp,disp);
477     /* circle within overlap? */
478     if (r1s < r2s) {
479     if (r2s >= r1s + d2) {
480     VCOPY(cc, c1);
481     return(r1s);
482     }
483     } else {
484     if (r1s >= r2s + d2) {
485     VCOPY(cc, c2);
486     return(r2s);
487     }
488     }
489     a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
490     /* no overlap? */
491     if (a2 <= 0.)
492     return(0.);
493     /* overlap, compute center */
494     l = sqrt((r1s - a2)/d2);
495     for (i = 0; i < 3; i++)
496     cc[i] = c1[i] + l*disp[i];
497     return(a2);
498 greg 1.1 }