ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.16
Committed: Mon Feb 26 21:16:02 2007 UTC (17 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R9
Changes since 2.15: +12 -4 lines
Log Message:
Added checks for source surfaces, including zero-area polygons

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.16 static const char RCSid[] = "$Id: srcsupp.c,v 2.15 2005/10/16 16:04:10 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Support routines for source objects and materials
6 greg 2.9 *
7     * External symbols declared in source.h
8     */
9    
10 greg 2.10 #include "copyright.h"
11 greg 1.1
12     #include "ray.h"
13    
14     #include "otypes.h"
15    
16     #include "source.h"
17    
18     #include "cone.h"
19    
20     #include "face.h"
21    
22 greg 2.12 #define SRCINC 8 /* realloc increment for array */
23 greg 1.1
24     SRCREC *source = NULL; /* our list of sources */
25     int nsources = 0; /* the number of sources */
26    
27     SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28    
29    
30 greg 2.9 void
31 greg 1.1 initstypes() /* initialize source dispatch table */
32     {
33 greg 1.9 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 greg 1.14 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35     static SOBJECT ssobj = {ssetsrc, nopart};
36     static SOBJECT sphsobj = {sphsetsrc, nopart};
37     static SOBJECT cylsobj = {cylsetsrc, cylpart};
38     static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39 greg 1.1
40     sfun[MAT_MIRROR].mf = &mirror_vs;
41 greg 1.9 sfun[MAT_DIRECT1].mf = &direct1_vs;
42     sfun[MAT_DIRECT2].mf = &direct2_vs;
43 greg 1.1 sfun[OBJ_FACE].of = &fsobj;
44     sfun[OBJ_SOURCE].of = &ssobj;
45     sfun[OBJ_SPHERE].of = &sphsobj;
46 greg 1.14 sfun[OBJ_CYLINDER].of = &cylsobj;
47 greg 1.1 sfun[OBJ_RING].of = &rsobj;
48     }
49    
50    
51 greg 1.2 int
52 greg 1.1 newsource() /* allocate new source in our array */
53     {
54     if (nsources == 0)
55 greg 1.13 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56     else if (nsources%SRCINC == 0)
57 greg 2.11 source = (SRCREC *)realloc((void *)source,
58 greg 1.13 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 greg 1.1 if (source == NULL)
60 greg 1.2 return(-1);
61 greg 1.1 source[nsources].sflags = 0;
62 greg 2.14 source[nsources].nhits = 1;
63     source[nsources].ntests = 2; /* initial hit probability = 50% */
64 greg 2.12 #if SHADCACHE
65     source[nsources].obscache = NULL;
66     #endif
67 greg 1.2 return(nsources++);
68 greg 1.1 }
69    
70    
71 greg 2.9 void
72 greg 1.14 setflatss(src) /* set sampling for a flat source */
73     register SRCREC *src;
74     {
75     double mult;
76     register int i;
77    
78     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
79     for (i = 0; i < 3; i++)
80     if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
81     break;
82     src->ss[SV][i] = 1.0;
83     fcross(src->ss[SU], src->ss[SV], src->snorm);
84     mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
85     for (i = 0; i < 3; i++)
86     src->ss[SU][i] *= mult;
87     fcross(src->ss[SV], src->snorm, src->ss[SU]);
88     }
89    
90    
91 greg 2.9 void
92 greg 1.1 fsetsrc(src, so) /* set a face as a source */
93     register SRCREC *src;
94     OBJREC *so;
95     {
96     register FACE *f;
97     register int i, j;
98 greg 1.14 double d;
99 greg 1.1
100     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
101     src->so = so;
102     /* get the face */
103     f = getface(so);
104 greg 2.16 if (f->area == 0.0)
105     objerror(so, USER, "zero source area");
106 greg 1.1 /* find the center */
107     for (j = 0; j < 3; j++) {
108     src->sloc[j] = 0.0;
109     for (i = 0; i < f->nv; i++)
110     src->sloc[j] += VERTEX(f,i)[j];
111     src->sloc[j] /= (double)f->nv;
112     }
113     if (!inface(src->sloc, f))
114 greg 2.16 objerror(so, USER, "cannot hit source center");
115 greg 1.1 src->sflags |= SFLAT;
116     VCOPY(src->snorm, f->norm);
117     src->ss2 = f->area;
118 greg 1.14 /* find maximum radius */
119     src->srad = 0.;
120     for (i = 0; i < f->nv; i++) {
121     d = dist2(VERTEX(f,i), src->sloc);
122     if (d > src->srad)
123     src->srad = d;
124     }
125     src->srad = sqrt(src->srad);
126     /* compute size vectors */
127 greg 2.7 if (f->nv == 4) /* parallelogram case */
128 greg 1.14 for (j = 0; j < 3; j++) {
129     src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
130     src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
131     }
132     else
133     setflatss(src);
134 greg 1.1 }
135    
136    
137 greg 2.9 void
138 greg 1.1 ssetsrc(src, so) /* set a source as a source */
139     register SRCREC *src;
140     register OBJREC *so;
141     {
142     double theta;
143    
144     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
145     src->so = so;
146     if (so->oargs.nfargs != 4)
147     objerror(so, USER, "bad arguments");
148     src->sflags |= SDISTANT;
149     VCOPY(src->sloc, so->oargs.farg);
150     if (normalize(src->sloc) == 0.0)
151     objerror(so, USER, "zero direction");
152     theta = PI/180.0/2.0 * so->oargs.farg[3];
153     if (theta <= FTINY)
154     objerror(so, USER, "zero size");
155     src->ss2 = 2.0*PI * (1.0 - cos(theta));
156 greg 1.14 /* the following is approximate */
157     src->srad = sqrt(src->ss2/PI);
158     VCOPY(src->snorm, src->sloc);
159     setflatss(src); /* hey, whatever works */
160     src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
161 greg 1.1 }
162    
163    
164 greg 2.9 void
165 greg 1.1 sphsetsrc(src, so) /* set a sphere as a source */
166     register SRCREC *src;
167     register OBJREC *so;
168     {
169 greg 1.14 register int i;
170    
171 greg 1.1 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
172     src->so = so;
173     if (so->oargs.nfargs != 4)
174     objerror(so, USER, "bad # arguments");
175     if (so->oargs.farg[3] <= FTINY)
176 greg 2.16 objerror(so, USER, "illegal source radius");
177 greg 1.1 VCOPY(src->sloc, so->oargs.farg);
178 greg 1.14 src->srad = so->oargs.farg[3];
179     src->ss2 = PI * src->srad * src->srad;
180     for (i = 0; i < 3; i++)
181     src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
182     for (i = 0; i < 3; i++)
183 greg 1.15 src->ss[i][i] = .7236 * so->oargs.farg[3];
184 greg 1.1 }
185    
186    
187 greg 2.9 void
188 greg 1.1 rsetsrc(src, so) /* set a ring (disk) as a source */
189     register SRCREC *src;
190     OBJREC *so;
191     {
192     register CONE *co;
193    
194     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
195     src->so = so;
196     /* get the ring */
197     co = getcone(so, 0);
198 greg 2.16 if (CO_R1(co) <= FTINY)
199     objerror(so, USER, "illegal source radius");
200 greg 1.1 VCOPY(src->sloc, CO_P0(co));
201     if (CO_R0(co) > 0.0)
202 greg 2.16 objerror(so, USER, "cannot hit source center");
203 greg 1.1 src->sflags |= SFLAT;
204     VCOPY(src->snorm, co->ad);
205 greg 1.14 src->srad = CO_R1(co);
206     src->ss2 = PI * src->srad * src->srad;
207     setflatss(src);
208     }
209    
210    
211 greg 2.9 void
212 greg 1.14 cylsetsrc(src, so) /* set a cylinder as a source */
213     register SRCREC *src;
214     OBJREC *so;
215     {
216     register CONE *co;
217     register int i;
218    
219     src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
220     src->so = so;
221     /* get the cylinder */
222     co = getcone(so, 0);
223 greg 2.16 if (CO_R0(co) <= FTINY)
224     objerror(so, USER, "illegal source radius");
225 greg 1.14 if (CO_R0(co) > .2*co->al) /* heuristic constraint */
226     objerror(so, WARNING, "source aspect too small");
227 greg 1.15 src->sflags |= SCYL;
228 greg 1.14 for (i = 0; i < 3; i++)
229     src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
230 greg 1.15 src->srad = .5*co->al;
231 greg 1.14 src->ss2 = 2.*CO_R0(co)*co->al;
232     /* set sampling vectors */
233     for (i = 0; i < 3; i++)
234     src->ss[SU][i] = .5 * co->al * co->ad[i];
235     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
236     for (i = 0; i < 3; i++)
237     if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
238     break;
239     src->ss[SV][i] = 1.0;
240     fcross(src->ss[SW], src->ss[SV], co->ad);
241     normalize(src->ss[SW]);
242     for (i = 0; i < 3; i++)
243 greg 1.15 src->ss[SW][i] *= .8559 * CO_R0(co);
244 greg 1.14 fcross(src->ss[SV], src->ss[SW], co->ad);
245 greg 1.1 }
246    
247    
248     SPOT *
249     makespot(m) /* make a spotlight */
250     register OBJREC *m;
251     {
252     register SPOT *ns;
253    
254 greg 2.5 if ((ns = (SPOT *)m->os) != NULL)
255     return(ns);
256 greg 1.1 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
257     return(NULL);
258 greg 2.16 if (m->oargs.farg[3] <= FTINY)
259     objerror(m, USER, "zero angle");
260 greg 1.1 ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
261     VCOPY(ns->aim, m->oargs.farg+4);
262     if ((ns->flen = normalize(ns->aim)) == 0.0)
263     objerror(m, USER, "zero focus vector");
264 greg 2.5 m->os = (char *)ns;
265 greg 1.1 return(ns);
266     }
267    
268    
269 greg 2.9 int
270 greg 2.8 spotout(r, s) /* check if we're outside spot region */
271 greg 2.5 register RAY *r;
272     register SPOT *s;
273     {
274     double d;
275     FVECT vd;
276    
277     if (s == NULL)
278     return(0);
279 greg 2.8 if (s->flen < -FTINY) { /* distant source */
280 greg 2.5 vd[0] = s->aim[0] - r->rorg[0];
281     vd[1] = s->aim[1] - r->rorg[1];
282     vd[2] = s->aim[2] - r->rorg[2];
283     d = DOT(r->rdir,vd);
284     /* wrong side?
285     if (d <= FTINY)
286     return(1); */
287     d = DOT(vd,vd) - d*d;
288     if (PI*d > s->siz)
289     return(1); /* out */
290     return(0); /* OK */
291     }
292     /* local source */
293     if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
294     return(1); /* out */
295     return(0); /* OK */
296     }
297    
298    
299 greg 1.1 double
300     fgetmaxdisk(ocent, op) /* get center and squared radius of face */
301     FVECT ocent;
302     OBJREC *op;
303     {
304     double maxrad2;
305 greg 1.5 double d;
306 greg 1.1 register int i, j;
307     register FACE *f;
308    
309     f = getface(op);
310 greg 1.5 if (f->area == 0.)
311     return(0.);
312 greg 1.1 for (i = 0; i < 3; i++) {
313     ocent[i] = 0.;
314     for (j = 0; j < f->nv; j++)
315     ocent[i] += VERTEX(f,j)[i];
316     ocent[i] /= (double)f->nv;
317     }
318 greg 1.5 d = DOT(ocent,f->norm);
319     for (i = 0; i < 3; i++)
320     ocent[i] += (f->offset - d)*f->norm[i];
321 greg 1.1 maxrad2 = 0.;
322     for (j = 0; j < f->nv; j++) {
323 greg 1.5 d = dist2(VERTEX(f,j), ocent);
324     if (d > maxrad2)
325     maxrad2 = d;
326 greg 1.1 }
327     return(maxrad2);
328     }
329    
330    
331     double
332     rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
333     FVECT ocent;
334     OBJREC *op;
335     {
336     register CONE *co;
337    
338     co = getcone(op, 0);
339     VCOPY(ocent, CO_P0(co));
340     return(CO_R1(co)*CO_R1(co));
341     }
342    
343    
344     double
345     fgetplaneq(nvec, op) /* get plane equation for face */
346     FVECT nvec;
347     OBJREC *op;
348     {
349     register FACE *fo;
350    
351     fo = getface(op);
352     VCOPY(nvec, fo->norm);
353     return(fo->offset);
354     }
355    
356    
357     double
358     rgetplaneq(nvec, op) /* get plane equation for ring */
359     FVECT nvec;
360     OBJREC *op;
361     {
362     register CONE *co;
363    
364     co = getcone(op, 0);
365     VCOPY(nvec, co->ad);
366     return(DOT(nvec, CO_P0(co)));
367 greg 1.4 }
368    
369    
370 greg 2.9 int
371 greg 1.4 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
372     register SPOT *sp1, *sp2;
373     FVECT org;
374     {
375     FVECT cent;
376     double rad2, cos1, cos2;
377    
378     cos1 = 1. - sp1->siz/(2.*PI);
379     cos2 = 1. - sp2->siz/(2.*PI);
380     if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
381     return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
382     sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
383     /* compute and check disks */
384     rad2 = intercircle(cent, sp1->aim, sp2->aim,
385     1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
386     if (rad2 <= FTINY || normalize(cent) == 0.)
387     return(0);
388     VCOPY(sp1->aim, cent);
389     sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
390     return(1);
391     }
392    
393    
394 greg 2.9 int
395 greg 1.4 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
396     register SPOT *sp1, *sp2;
397     FVECT dir;
398     {
399     FVECT cent, c1, c2;
400     double rad2, d;
401     register int i;
402     /* move centers to common plane */
403     d = DOT(sp1->aim, dir);
404     for (i = 0; i < 3; i++)
405     c1[i] = sp1->aim[i] - d*dir[i];
406     d = DOT(sp2->aim, dir);
407     for (i = 0; i < 3; i++)
408     c2[i] = sp2->aim[i] - d*dir[i];
409     /* compute overlap */
410     rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
411     if (rad2 <= FTINY)
412     return(0);
413     VCOPY(sp1->aim, cent);
414     sp1->siz = PI*rad2;
415     return(1);
416     }
417    
418    
419 greg 2.9 int
420 greg 1.4 checkspot(sp, nrm) /* check spotlight for behind source */
421     register SPOT *sp; /* spotlight */
422     FVECT nrm; /* source surface normal */
423     {
424     double d, d1;
425    
426     d = DOT(sp->aim, nrm);
427     if (d > FTINY) /* center in front? */
428 greg 1.8 return(1);
429 greg 1.4 /* else check horizon */
430     d1 = 1. - sp->siz/(2.*PI);
431 greg 1.8 return(1.-FTINY-d*d < d1*d1);
432 greg 1.4 }
433    
434    
435     double
436 greg 1.6 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
437     FVECT oc;
438     OBJREC *op;
439     register SPOT *sp;
440     FVECT pos;
441     {
442     FVECT onorm;
443     double offs, d, dist;
444     register int i;
445    
446     offs = getplaneq(onorm, op);
447     d = -DOT(onorm, sp->aim);
448     if (d >= -FTINY && d <= FTINY)
449     return(0.);
450     dist = (DOT(pos, onorm) - offs)/d;
451     if (dist < 0.)
452     return(0.);
453     for (i = 0; i < 3; i++)
454     oc[i] = pos[i] + dist*sp->aim[i];
455     return(sp->siz*dist*dist/PI/(d*d));
456     }
457    
458    
459     double
460     beamdisk(oc, op, sp, dir) /* intersect beam with object op */
461     FVECT oc;
462     OBJREC *op;
463     register SPOT *sp;
464     FVECT dir;
465     {
466     FVECT onorm;
467     double offs, d, dist;
468     register int i;
469    
470     offs = getplaneq(onorm, op);
471     d = -DOT(onorm, dir);
472     if (d >= -FTINY && d <= FTINY)
473     return(0.);
474     dist = (DOT(sp->aim, onorm) - offs)/d;
475     for (i = 0; i < 3; i++)
476     oc[i] = sp->aim[i] + dist*dir[i];
477     return(sp->siz/PI/(d*d));
478     }
479    
480    
481     double
482 greg 1.4 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
483     FVECT cc; /* midpoint (return value) */
484     FVECT c1, c2; /* circle centers */
485     double r1s, r2s; /* radii squared */
486     {
487     double a2, d2, l;
488     FVECT disp;
489     register int i;
490    
491     for (i = 0; i < 3; i++)
492     disp[i] = c2[i] - c1[i];
493     d2 = DOT(disp,disp);
494     /* circle within overlap? */
495     if (r1s < r2s) {
496     if (r2s >= r1s + d2) {
497     VCOPY(cc, c1);
498     return(r1s);
499     }
500     } else {
501     if (r1s >= r2s + d2) {
502     VCOPY(cc, c2);
503     return(r2s);
504     }
505     }
506     a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
507     /* no overlap? */
508     if (a2 <= 0.)
509     return(0.);
510     /* overlap, compute center */
511     l = sqrt((r1s - a2)/d2);
512     for (i = 0; i < 3; i++)
513     cc[i] = c1[i] + l*disp[i];
514     return(a2);
515 greg 1.1 }