ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsupp.c
Revision: 2.11
Committed: Wed Apr 23 00:52:34 2003 UTC (21 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.10: +1 -1 lines
Log Message:
Added (void *) cast to realloc calls

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.9 static const char RCSid[] = "$Id$";
3 greg 1.1 #endif
4     /*
5     * Support routines for source objects and materials
6 greg 2.9 *
7     * External symbols declared in source.h
8     */
9    
10 greg 2.10 #include "copyright.h"
11 greg 1.1
12     #include "ray.h"
13    
14     #include "otypes.h"
15    
16     #include "source.h"
17    
18     #include "cone.h"
19    
20     #include "face.h"
21    
22 greg 1.14 #define SRCINC 4 /* realloc increment for array */
23 greg 1.1
24     SRCREC *source = NULL; /* our list of sources */
25     int nsources = 0; /* the number of sources */
26    
27     SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
28    
29    
30 greg 2.9 void
31 greg 1.1 initstypes() /* initialize source dispatch table */
32     {
33 greg 1.9 extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
34 greg 1.14 static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
35     static SOBJECT ssobj = {ssetsrc, nopart};
36     static SOBJECT sphsobj = {sphsetsrc, nopart};
37     static SOBJECT cylsobj = {cylsetsrc, cylpart};
38     static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
39 greg 1.1
40     sfun[MAT_MIRROR].mf = &mirror_vs;
41 greg 1.9 sfun[MAT_DIRECT1].mf = &direct1_vs;
42     sfun[MAT_DIRECT2].mf = &direct2_vs;
43 greg 1.1 sfun[OBJ_FACE].of = &fsobj;
44     sfun[OBJ_SOURCE].of = &ssobj;
45     sfun[OBJ_SPHERE].of = &sphsobj;
46 greg 1.14 sfun[OBJ_CYLINDER].of = &cylsobj;
47 greg 1.1 sfun[OBJ_RING].of = &rsobj;
48     }
49    
50    
51 greg 1.2 int
52 greg 1.1 newsource() /* allocate new source in our array */
53     {
54     if (nsources == 0)
55 greg 1.13 source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
56     else if (nsources%SRCINC == 0)
57 greg 2.11 source = (SRCREC *)realloc((void *)source,
58 greg 1.13 (unsigned)(nsources+SRCINC)*sizeof(SRCREC));
59 greg 1.1 if (source == NULL)
60 greg 1.2 return(-1);
61 greg 1.1 source[nsources].sflags = 0;
62     source[nsources].nhits = 1;
63     source[nsources].ntests = 2; /* initial hit probability = 1/2 */
64 greg 1.2 return(nsources++);
65 greg 1.1 }
66    
67    
68 greg 2.9 void
69 greg 1.14 setflatss(src) /* set sampling for a flat source */
70     register SRCREC *src;
71     {
72     double mult;
73     register int i;
74    
75     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
76     for (i = 0; i < 3; i++)
77     if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
78     break;
79     src->ss[SV][i] = 1.0;
80     fcross(src->ss[SU], src->ss[SV], src->snorm);
81     mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
82     for (i = 0; i < 3; i++)
83     src->ss[SU][i] *= mult;
84     fcross(src->ss[SV], src->snorm, src->ss[SU]);
85     }
86    
87    
88 greg 2.9 void
89 greg 1.1 fsetsrc(src, so) /* set a face as a source */
90     register SRCREC *src;
91     OBJREC *so;
92     {
93     register FACE *f;
94     register int i, j;
95 greg 1.14 double d;
96 greg 1.1
97     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
98     src->so = so;
99     /* get the face */
100     f = getface(so);
101     /* find the center */
102     for (j = 0; j < 3; j++) {
103     src->sloc[j] = 0.0;
104     for (i = 0; i < f->nv; i++)
105     src->sloc[j] += VERTEX(f,i)[j];
106     src->sloc[j] /= (double)f->nv;
107     }
108     if (!inface(src->sloc, f))
109     objerror(so, USER, "cannot hit center");
110     src->sflags |= SFLAT;
111     VCOPY(src->snorm, f->norm);
112     src->ss2 = f->area;
113 greg 1.14 /* find maximum radius */
114     src->srad = 0.;
115     for (i = 0; i < f->nv; i++) {
116     d = dist2(VERTEX(f,i), src->sloc);
117     if (d > src->srad)
118     src->srad = d;
119     }
120     src->srad = sqrt(src->srad);
121     /* compute size vectors */
122 greg 2.7 if (f->nv == 4) /* parallelogram case */
123 greg 1.14 for (j = 0; j < 3; j++) {
124     src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
125     src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
126     }
127     else
128     setflatss(src);
129 greg 1.1 }
130    
131    
132 greg 2.9 void
133 greg 1.1 ssetsrc(src, so) /* set a source as a source */
134     register SRCREC *src;
135     register OBJREC *so;
136     {
137     double theta;
138    
139     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
140     src->so = so;
141     if (so->oargs.nfargs != 4)
142     objerror(so, USER, "bad arguments");
143     src->sflags |= SDISTANT;
144     VCOPY(src->sloc, so->oargs.farg);
145     if (normalize(src->sloc) == 0.0)
146     objerror(so, USER, "zero direction");
147     theta = PI/180.0/2.0 * so->oargs.farg[3];
148     if (theta <= FTINY)
149     objerror(so, USER, "zero size");
150     src->ss2 = 2.0*PI * (1.0 - cos(theta));
151 greg 1.14 /* the following is approximate */
152     src->srad = sqrt(src->ss2/PI);
153     VCOPY(src->snorm, src->sloc);
154     setflatss(src); /* hey, whatever works */
155     src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
156 greg 1.1 }
157    
158    
159 greg 2.9 void
160 greg 1.1 sphsetsrc(src, so) /* set a sphere as a source */
161     register SRCREC *src;
162     register OBJREC *so;
163     {
164 greg 1.14 register int i;
165    
166 greg 1.1 src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
167     src->so = so;
168     if (so->oargs.nfargs != 4)
169     objerror(so, USER, "bad # arguments");
170     if (so->oargs.farg[3] <= FTINY)
171     objerror(so, USER, "illegal radius");
172     VCOPY(src->sloc, so->oargs.farg);
173 greg 1.14 src->srad = so->oargs.farg[3];
174     src->ss2 = PI * src->srad * src->srad;
175     for (i = 0; i < 3; i++)
176     src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
177     for (i = 0; i < 3; i++)
178 greg 1.15 src->ss[i][i] = .7236 * so->oargs.farg[3];
179 greg 1.1 }
180    
181    
182 greg 2.9 void
183 greg 1.1 rsetsrc(src, so) /* set a ring (disk) as a source */
184     register SRCREC *src;
185     OBJREC *so;
186     {
187     register CONE *co;
188    
189     src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
190     src->so = so;
191     /* get the ring */
192     co = getcone(so, 0);
193     VCOPY(src->sloc, CO_P0(co));
194     if (CO_R0(co) > 0.0)
195     objerror(so, USER, "cannot hit center");
196     src->sflags |= SFLAT;
197     VCOPY(src->snorm, co->ad);
198 greg 1.14 src->srad = CO_R1(co);
199     src->ss2 = PI * src->srad * src->srad;
200     setflatss(src);
201     }
202    
203    
204 greg 2.9 void
205 greg 1.14 cylsetsrc(src, so) /* set a cylinder as a source */
206     register SRCREC *src;
207     OBJREC *so;
208     {
209     register CONE *co;
210     register int i;
211    
212     src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
213     src->so = so;
214     /* get the cylinder */
215     co = getcone(so, 0);
216     if (CO_R0(co) > .2*co->al) /* heuristic constraint */
217     objerror(so, WARNING, "source aspect too small");
218 greg 1.15 src->sflags |= SCYL;
219 greg 1.14 for (i = 0; i < 3; i++)
220     src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
221 greg 1.15 src->srad = .5*co->al;
222 greg 1.14 src->ss2 = 2.*CO_R0(co)*co->al;
223     /* set sampling vectors */
224     for (i = 0; i < 3; i++)
225     src->ss[SU][i] = .5 * co->al * co->ad[i];
226     src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
227     for (i = 0; i < 3; i++)
228     if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
229     break;
230     src->ss[SV][i] = 1.0;
231     fcross(src->ss[SW], src->ss[SV], co->ad);
232     normalize(src->ss[SW]);
233     for (i = 0; i < 3; i++)
234 greg 1.15 src->ss[SW][i] *= .8559 * CO_R0(co);
235 greg 1.14 fcross(src->ss[SV], src->ss[SW], co->ad);
236 greg 1.1 }
237    
238    
239     SPOT *
240     makespot(m) /* make a spotlight */
241     register OBJREC *m;
242     {
243     register SPOT *ns;
244    
245 greg 2.5 if ((ns = (SPOT *)m->os) != NULL)
246     return(ns);
247 greg 1.1 if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
248     return(NULL);
249     ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
250     VCOPY(ns->aim, m->oargs.farg+4);
251     if ((ns->flen = normalize(ns->aim)) == 0.0)
252     objerror(m, USER, "zero focus vector");
253 greg 2.5 m->os = (char *)ns;
254 greg 1.1 return(ns);
255     }
256    
257    
258 greg 2.9 int
259 greg 2.8 spotout(r, s) /* check if we're outside spot region */
260 greg 2.5 register RAY *r;
261     register SPOT *s;
262     {
263     double d;
264     FVECT vd;
265    
266     if (s == NULL)
267     return(0);
268 greg 2.8 if (s->flen < -FTINY) { /* distant source */
269 greg 2.5 vd[0] = s->aim[0] - r->rorg[0];
270     vd[1] = s->aim[1] - r->rorg[1];
271     vd[2] = s->aim[2] - r->rorg[2];
272     d = DOT(r->rdir,vd);
273     /* wrong side?
274     if (d <= FTINY)
275     return(1); */
276     d = DOT(vd,vd) - d*d;
277     if (PI*d > s->siz)
278     return(1); /* out */
279     return(0); /* OK */
280     }
281     /* local source */
282     if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
283     return(1); /* out */
284     return(0); /* OK */
285     }
286    
287    
288 greg 1.1 double
289     fgetmaxdisk(ocent, op) /* get center and squared radius of face */
290     FVECT ocent;
291     OBJREC *op;
292     {
293     double maxrad2;
294 greg 1.5 double d;
295 greg 1.1 register int i, j;
296     register FACE *f;
297    
298     f = getface(op);
299 greg 1.5 if (f->area == 0.)
300     return(0.);
301 greg 1.1 for (i = 0; i < 3; i++) {
302     ocent[i] = 0.;
303     for (j = 0; j < f->nv; j++)
304     ocent[i] += VERTEX(f,j)[i];
305     ocent[i] /= (double)f->nv;
306     }
307 greg 1.5 d = DOT(ocent,f->norm);
308     for (i = 0; i < 3; i++)
309     ocent[i] += (f->offset - d)*f->norm[i];
310 greg 1.1 maxrad2 = 0.;
311     for (j = 0; j < f->nv; j++) {
312 greg 1.5 d = dist2(VERTEX(f,j), ocent);
313     if (d > maxrad2)
314     maxrad2 = d;
315 greg 1.1 }
316     return(maxrad2);
317     }
318    
319    
320     double
321     rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
322     FVECT ocent;
323     OBJREC *op;
324     {
325     register CONE *co;
326    
327     co = getcone(op, 0);
328     VCOPY(ocent, CO_P0(co));
329     return(CO_R1(co)*CO_R1(co));
330     }
331    
332    
333     double
334     fgetplaneq(nvec, op) /* get plane equation for face */
335     FVECT nvec;
336     OBJREC *op;
337     {
338     register FACE *fo;
339    
340     fo = getface(op);
341     VCOPY(nvec, fo->norm);
342     return(fo->offset);
343     }
344    
345    
346     double
347     rgetplaneq(nvec, op) /* get plane equation for ring */
348     FVECT nvec;
349     OBJREC *op;
350     {
351     register CONE *co;
352    
353     co = getcone(op, 0);
354     VCOPY(nvec, co->ad);
355     return(DOT(nvec, CO_P0(co)));
356 greg 1.4 }
357    
358    
359 greg 2.9 int
360 greg 1.4 commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
361     register SPOT *sp1, *sp2;
362     FVECT org;
363     {
364     FVECT cent;
365     double rad2, cos1, cos2;
366    
367     cos1 = 1. - sp1->siz/(2.*PI);
368     cos2 = 1. - sp2->siz/(2.*PI);
369     if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
370     return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
371     sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
372     /* compute and check disks */
373     rad2 = intercircle(cent, sp1->aim, sp2->aim,
374     1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
375     if (rad2 <= FTINY || normalize(cent) == 0.)
376     return(0);
377     VCOPY(sp1->aim, cent);
378     sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
379     return(1);
380     }
381    
382    
383 greg 2.9 int
384 greg 1.4 commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
385     register SPOT *sp1, *sp2;
386     FVECT dir;
387     {
388     FVECT cent, c1, c2;
389     double rad2, d;
390     register int i;
391     /* move centers to common plane */
392     d = DOT(sp1->aim, dir);
393     for (i = 0; i < 3; i++)
394     c1[i] = sp1->aim[i] - d*dir[i];
395     d = DOT(sp2->aim, dir);
396     for (i = 0; i < 3; i++)
397     c2[i] = sp2->aim[i] - d*dir[i];
398     /* compute overlap */
399     rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
400     if (rad2 <= FTINY)
401     return(0);
402     VCOPY(sp1->aim, cent);
403     sp1->siz = PI*rad2;
404     return(1);
405     }
406    
407    
408 greg 2.9 int
409 greg 1.4 checkspot(sp, nrm) /* check spotlight for behind source */
410     register SPOT *sp; /* spotlight */
411     FVECT nrm; /* source surface normal */
412     {
413     double d, d1;
414    
415     d = DOT(sp->aim, nrm);
416     if (d > FTINY) /* center in front? */
417 greg 1.8 return(1);
418 greg 1.4 /* else check horizon */
419     d1 = 1. - sp->siz/(2.*PI);
420 greg 1.8 return(1.-FTINY-d*d < d1*d1);
421 greg 1.4 }
422    
423    
424     double
425 greg 1.6 spotdisk(oc, op, sp, pos) /* intersect spot with object op */
426     FVECT oc;
427     OBJREC *op;
428     register SPOT *sp;
429     FVECT pos;
430     {
431     FVECT onorm;
432     double offs, d, dist;
433     register int i;
434    
435     offs = getplaneq(onorm, op);
436     d = -DOT(onorm, sp->aim);
437     if (d >= -FTINY && d <= FTINY)
438     return(0.);
439     dist = (DOT(pos, onorm) - offs)/d;
440     if (dist < 0.)
441     return(0.);
442     for (i = 0; i < 3; i++)
443     oc[i] = pos[i] + dist*sp->aim[i];
444     return(sp->siz*dist*dist/PI/(d*d));
445     }
446    
447    
448     double
449     beamdisk(oc, op, sp, dir) /* intersect beam with object op */
450     FVECT oc;
451     OBJREC *op;
452     register SPOT *sp;
453     FVECT dir;
454     {
455     FVECT onorm;
456     double offs, d, dist;
457     register int i;
458    
459     offs = getplaneq(onorm, op);
460     d = -DOT(onorm, dir);
461     if (d >= -FTINY && d <= FTINY)
462     return(0.);
463     dist = (DOT(sp->aim, onorm) - offs)/d;
464     for (i = 0; i < 3; i++)
465     oc[i] = sp->aim[i] + dist*dir[i];
466     return(sp->siz/PI/(d*d));
467     }
468    
469    
470     double
471 greg 1.4 intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
472     FVECT cc; /* midpoint (return value) */
473     FVECT c1, c2; /* circle centers */
474     double r1s, r2s; /* radii squared */
475     {
476     double a2, d2, l;
477     FVECT disp;
478     register int i;
479    
480     for (i = 0; i < 3; i++)
481     disp[i] = c2[i] - c1[i];
482     d2 = DOT(disp,disp);
483     /* circle within overlap? */
484     if (r1s < r2s) {
485     if (r2s >= r1s + d2) {
486     VCOPY(cc, c1);
487     return(r1s);
488     }
489     } else {
490     if (r1s >= r2s + d2) {
491     VCOPY(cc, c2);
492     return(r2s);
493     }
494     }
495     a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
496     /* no overlap? */
497     if (a2 <= 0.)
498     return(0.);
499     /* overlap, compute center */
500     l = sqrt((r1s - a2)/d2);
501     for (i = 0; i < 3; i++)
502     cc[i] = c1[i] + l*disp[i];
503     return(a2);
504 greg 1.1 }