ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsamp.c
Revision: 2.16
Committed: Sat Jun 6 02:11:44 2009 UTC (14 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R0
Changes since 2.15: +16 -14 lines
Log Message:
Fixed erroneous "aiming failure" with certain mirrored virtual sources

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsamp.c,v 2.15 2008/12/10 17:33:23 greg Exp $";
3 #endif
4 /*
5 * Source sampling routines
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "source.h"
15
16 #include "random.h"
17
18
19 static int cyl_partit(), flt_partit();
20
21
22 double
23 nextssamp(r, si) /* compute sample for source, rtn. distance */
24 register RAY *r; /* origin is read, direction is set */
25 register SRCINDEX *si; /* source index (modified to current) */
26 {
27 int cent[3], size[3], parr[2];
28 SRCREC *srcp;
29 FVECT vpos;
30 double d;
31 register int i;
32 nextsample:
33 while (++si->sp >= si->np) { /* get next sample */
34 if (++si->sn >= nsources)
35 return(0.0); /* no more */
36 if (source[si->sn].sflags & SSKIP)
37 si->np = 0;
38 else if (srcsizerat <= FTINY)
39 nopart(si, r);
40 else {
41 for (i = si->sn; source[i].sflags & SVIRTUAL;
42 i = source[i].sa.sv.sn)
43 ; /* partition source */
44 (*sfun[source[i].so->otype].of->partit)(si, r);
45 }
46 si->sp = -1;
47 }
48 /* get partition */
49 cent[0] = cent[1] = cent[2] = 0;
50 size[0] = size[1] = size[2] = MAXSPART;
51 parr[0] = 0; parr[1] = si->sp;
52 if (!skipparts(cent, size, parr, si->spt))
53 error(CONSISTENCY, "bad source partition in nextssamp");
54 /* compute sample */
55 srcp = source + si->sn;
56 if (dstrsrc > FTINY) { /* jitter sample */
57 dimlist[ndims] = si->sn + 8831;
58 dimlist[ndims+1] = si->sp + 3109;
59 d = urand(ilhash(dimlist,ndims+2)+samplendx);
60 if (srcp->sflags & SFLAT) {
61 multisamp(vpos, 2, d);
62 vpos[SW] = 0.5;
63 } else
64 multisamp(vpos, 3, d);
65 for (i = 0; i < 3; i++)
66 vpos[i] = dstrsrc * (1. - 2.*vpos[i]) *
67 (double)size[i]/MAXSPART;
68 } else
69 vpos[0] = vpos[1] = vpos[2] = 0.0;
70
71 for (i = 0; i < 3; i++)
72 vpos[i] += (double)cent[i]/MAXSPART;
73 /* avoid circular aiming failures */
74 if ((srcp->sflags & SCIR) && (si->np > 1 || dstrsrc > 0.7)) {
75 FVECT trim;
76 if (srcp->sflags & (SFLAT|SDISTANT)) {
77 d = 1.12837917; /* correct setflatss() */
78 trim[SU] = d*sqrt(1.0 - 0.5*vpos[SV]*vpos[SV]);
79 trim[SV] = d*sqrt(1.0 - 0.5*vpos[SU]*vpos[SU]);
80 trim[SW] = 0.0;
81 } else {
82 trim[SW] = trim[SU] = vpos[SU]*vpos[SU];
83 d = vpos[SV]*vpos[SV];
84 if (d > trim[SW]) trim[SW] = d;
85 trim[SU] += d;
86 d = vpos[SW]*vpos[SW];
87 if (d > trim[SW]) trim[SW] = d;
88 trim[SU] += d;
89 if (trim[SU] > FTINY*FTINY) {
90 d = 1.0/0.7236; /* correct sphsetsrc() */
91 trim[SW] = trim[SV] = trim[SU] =
92 d*sqrt(trim[SW]/trim[SU]);
93 } else
94 trim[SW] = trim[SV] = trim[SU] = 0.0;
95 }
96 for (i = 0; i < 3; i++)
97 vpos[i] *= trim[i];
98 }
99 /* compute direction */
100 for (i = 0; i < 3; i++)
101 r->rdir[i] = srcp->sloc[i] +
102 vpos[SU]*srcp->ss[SU][i] +
103 vpos[SV]*srcp->ss[SV][i] +
104 vpos[SW]*srcp->ss[SW][i];
105
106 if (!(srcp->sflags & SDISTANT))
107 for (i = 0; i < 3; i++)
108 r->rdir[i] -= r->rorg[i];
109 /* compute distance */
110 if ((d = normalize(r->rdir)) == 0.0)
111 goto nextsample; /* at source! */
112
113 /* compute sample size */
114 if (srcp->sflags & SFLAT) {
115 si->dom = sflatform(si->sn, r->rdir);
116 si->dom *= size[SU]*size[SV]/(MAXSPART*(double)MAXSPART);
117 } else if (srcp->sflags & SCYL) {
118 si->dom = scylform(si->sn, r->rdir);
119 si->dom *= size[SU]/(double)MAXSPART;
120 } else {
121 si->dom = size[SU]*size[SV]*(double)size[SW] /
122 (MAXSPART*MAXSPART*(double)MAXSPART) ;
123 }
124 if (srcp->sflags & SDISTANT) {
125 si->dom *= srcp->ss2;
126 return(FHUGE);
127 }
128 if (si->dom <= 1e-4)
129 goto nextsample; /* behind source? */
130 si->dom *= srcp->ss2/(d*d);
131 return(d); /* sample OK, return distance */
132 }
133
134
135 int
136 skipparts(ct, sz, pp, pt) /* skip to requested partition */
137 int ct[3], sz[3]; /* center and size of partition (returned) */
138 register int pp[2]; /* current index, number to skip (modified) */
139 unsigned char *pt; /* partition array */
140 {
141 register int p;
142 /* check this partition */
143 p = spart(pt, pp[0]);
144 pp[0]++;
145 if (p == S0) { /* leaf partition */
146 if (pp[1]) {
147 pp[1]--;
148 return(0); /* not there yet */
149 } else
150 return(1); /* we've arrived */
151 }
152 /* else check lower */
153 sz[p] >>= 1;
154 ct[p] -= sz[p];
155 if (skipparts(ct, sz, pp, pt))
156 return(1); /* return hit */
157 /* else check upper */
158 ct[p] += sz[p] << 1;
159 if (skipparts(ct, sz, pp, pt))
160 return(1); /* return hit */
161 /* else return to starting position */
162 ct[p] -= sz[p];
163 sz[p] <<= 1;
164 return(0); /* return miss */
165 }
166
167
168 void
169 nopart(si, r) /* single source partition */
170 register SRCINDEX *si;
171 RAY *r;
172 {
173 clrpart(si->spt);
174 setpart(si->spt, 0, S0);
175 si->np = 1;
176 }
177
178
179 void
180 cylpart(si, r) /* partition a cylinder */
181 SRCINDEX *si;
182 register RAY *r;
183 {
184 double dist2, safedist2, dist2cent, rad2;
185 FVECT v;
186 register SRCREC *sp;
187 int pi;
188 /* first check point location */
189 clrpart(si->spt);
190 sp = source + si->sn;
191 rad2 = 1.365 * DOT(sp->ss[SV],sp->ss[SV]);
192 v[0] = r->rorg[0] - sp->sloc[0];
193 v[1] = r->rorg[1] - sp->sloc[1];
194 v[2] = r->rorg[2] - sp->sloc[2];
195 dist2 = DOT(v,sp->ss[SU]);
196 safedist2 = DOT(sp->ss[SU],sp->ss[SU]);
197 dist2 *= dist2 / safedist2;
198 dist2cent = DOT(v,v);
199 dist2 = dist2cent - dist2;
200 if (dist2 <= rad2) { /* point inside extended cylinder */
201 si->np = 0;
202 return;
203 }
204 safedist2 *= 4.*r->rweight*r->rweight/(srcsizerat*srcsizerat);
205 if (dist2 <= 4.*rad2 || /* point too close to subdivide */
206 dist2cent >= safedist2) { /* or too far */
207 setpart(si->spt, 0, S0);
208 si->np = 1;
209 return;
210 }
211 pi = 0;
212 si->np = cyl_partit(r->rorg, si->spt, &pi, MAXSPART,
213 sp->sloc, sp->ss[SU], safedist2);
214 }
215
216
217 static int
218 cyl_partit(ro, pt, pi, mp, cent, axis, d2) /* slice a cylinder */
219 FVECT ro;
220 unsigned char *pt;
221 register int *pi;
222 int mp;
223 FVECT cent, axis;
224 double d2;
225 {
226 FVECT newct, newax;
227 int npl, npu;
228
229 if (mp < 2 || dist2(ro, cent) >= d2) { /* hit limit? */
230 setpart(pt, *pi, S0);
231 (*pi)++;
232 return(1);
233 }
234 /* subdivide */
235 setpart(pt, *pi, SU);
236 (*pi)++;
237 newax[0] = .5*axis[0];
238 newax[1] = .5*axis[1];
239 newax[2] = .5*axis[2];
240 d2 *= 0.25;
241 /* lower half */
242 newct[0] = cent[0] - newax[0];
243 newct[1] = cent[1] - newax[1];
244 newct[2] = cent[2] - newax[2];
245 npl = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
246 /* upper half */
247 newct[0] = cent[0] + newax[0];
248 newct[1] = cent[1] + newax[1];
249 newct[2] = cent[2] + newax[2];
250 npu = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
251 /* return total */
252 return(npl + npu);
253 }
254
255
256 void
257 flatpart(si, r) /* partition a flat source */
258 register SRCINDEX *si;
259 register RAY *r;
260 {
261 register RREAL *vp;
262 FVECT v;
263 double du2, dv2;
264 int pi;
265
266 clrpart(si->spt);
267 vp = source[si->sn].sloc;
268 v[0] = r->rorg[0] - vp[0];
269 v[1] = r->rorg[1] - vp[1];
270 v[2] = r->rorg[2] - vp[2];
271 vp = source[si->sn].snorm;
272 if (DOT(v,vp) <= 0.) { /* behind source */
273 si->np = 0;
274 return;
275 }
276 dv2 = 2.*r->rweight/srcsizerat;
277 dv2 *= dv2;
278 vp = source[si->sn].ss[SU];
279 du2 = dv2 * DOT(vp,vp);
280 vp = source[si->sn].ss[SV];
281 dv2 *= DOT(vp,vp);
282 pi = 0;
283 si->np = flt_partit(r->rorg, si->spt, &pi, MAXSPART,
284 source[si->sn].sloc,
285 source[si->sn].ss[SU], source[si->sn].ss[SV], du2, dv2);
286 }
287
288
289 static int
290 flt_partit(ro, pt, pi, mp, cent, u, v, du2, dv2) /* partition flatty */
291 FVECT ro;
292 unsigned char *pt;
293 register int *pi;
294 int mp;
295 FVECT cent, u, v;
296 double du2, dv2;
297 {
298 double d2;
299 FVECT newct, newax;
300 int npl, npu;
301
302 if (mp < 2 || ((d2 = dist2(ro, cent)) >= du2
303 && d2 >= dv2)) { /* hit limit? */
304 setpart(pt, *pi, S0);
305 (*pi)++;
306 return(1);
307 }
308 if (du2 > dv2) { /* subdivide in U */
309 setpart(pt, *pi, SU);
310 (*pi)++;
311 newax[0] = .5*u[0];
312 newax[1] = .5*u[1];
313 newax[2] = .5*u[2];
314 u = newax;
315 du2 *= 0.25;
316 } else { /* subdivide in V */
317 setpart(pt, *pi, SV);
318 (*pi)++;
319 newax[0] = .5*v[0];
320 newax[1] = .5*v[1];
321 newax[2] = .5*v[2];
322 v = newax;
323 dv2 *= 0.25;
324 }
325 /* lower half */
326 newct[0] = cent[0] - newax[0];
327 newct[1] = cent[1] - newax[1];
328 newct[2] = cent[2] - newax[2];
329 npl = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
330 /* upper half */
331 newct[0] = cent[0] + newax[0];
332 newct[1] = cent[1] + newax[1];
333 newct[2] = cent[2] + newax[2];
334 npu = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
335 /* return total */
336 return(npl + npu);
337 }
338
339
340 double
341 scylform(sn, dir) /* compute cosine for cylinder's projection */
342 int sn;
343 register FVECT dir; /* assume normalized */
344 {
345 register RREAL *dv;
346 double d;
347
348 dv = source[sn].ss[SU];
349 d = DOT(dir, dv);
350 d *= d / DOT(dv,dv);
351 return(sqrt(1. - d));
352 }