ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsamp.c
Revision: 2.15
Committed: Wed Dec 10 17:33:23 2008 UTC (15 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +7 -4 lines
Log Message:
Added test for divide-by-zero

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsamp.c,v 2.14 2008/12/10 07:07:07 greg Exp $";
3 #endif
4 /*
5 * Source sampling routines
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "source.h"
15
16 #include "random.h"
17
18
19 static int cyl_partit(), flt_partit();
20
21
22 double
23 nextssamp(r, si) /* compute sample for source, rtn. distance */
24 register RAY *r; /* origin is read, direction is set */
25 register SRCINDEX *si; /* source index (modified to current) */
26 {
27 int cent[3], size[3], parr[2];
28 FVECT vpos;
29 double d;
30 register int i;
31 nextsample:
32 while (++si->sp >= si->np) { /* get next sample */
33 if (++si->sn >= nsources)
34 return(0.0); /* no more */
35 if (source[si->sn].sflags & SSKIP)
36 si->np = 0;
37 else if (srcsizerat <= FTINY)
38 nopart(si, r);
39 else {
40 for (i = si->sn; source[i].sflags & SVIRTUAL;
41 i = source[i].sa.sv.sn)
42 ; /* partition source */
43 (*sfun[source[i].so->otype].of->partit)(si, r);
44 }
45 si->sp = -1;
46 }
47 /* get partition */
48 cent[0] = cent[1] = cent[2] = 0;
49 size[0] = size[1] = size[2] = MAXSPART;
50 parr[0] = 0; parr[1] = si->sp;
51 if (!skipparts(cent, size, parr, si->spt))
52 error(CONSISTENCY, "bad source partition in nextssamp");
53 /* compute sample */
54 if (dstrsrc > FTINY) { /* jitter sample */
55 dimlist[ndims] = si->sn + 8831;
56 dimlist[ndims+1] = si->sp + 3109;
57 d = urand(ilhash(dimlist,ndims+2)+samplendx);
58 if (source[si->sn].sflags & SFLAT) {
59 multisamp(vpos, 2, d);
60 vpos[SW] = 0.5;
61 } else
62 multisamp(vpos, 3, d);
63 for (i = 0; i < 3; i++)
64 vpos[i] = dstrsrc * (1. - 2.*vpos[i]) *
65 (double)size[i]/MAXSPART;
66 } else
67 vpos[0] = vpos[1] = vpos[2] = 0.0;
68
69 for (i = 0; i < 3; i++)
70 vpos[i] += (double)cent[i]/MAXSPART;
71 /* avoid circular aiming failures */
72 if ((source[si->sn].sflags & SCIR) && (si->np > 1 || dstrsrc > 0.7)) {
73 FVECT trim;
74 if (source[si->sn].sflags & (SFLAT|SDISTANT)) {
75 d = 1.12837917; /* correct setflatss() */
76 trim[SU] = d*sqrt(1.0 - 0.5*vpos[SV]*vpos[SV]);
77 trim[SV] = d*sqrt(1.0 - 0.5*vpos[SU]*vpos[SU]);
78 trim[SW] = 0.0;
79 } else {
80 trim[SW] = trim[SU] = vpos[SU]*vpos[SU];
81 d = vpos[SV]*vpos[SV];
82 if (d > trim[SW]) trim[SW] = d;
83 trim[SU] += d;
84 d = vpos[SW]*vpos[SW];
85 if (d > trim[SW]) trim[SW] = d;
86 trim[SU] += d;
87 if (trim[SU] > FTINY*FTINY) {
88 d = 1.0/0.7236; /* correct sphsetsrc() */
89 trim[SW] = trim[SV] = trim[SU] =
90 d*sqrt(trim[SW]/trim[SU]);
91 } else
92 trim[SW] = trim[SV] = trim[SU] = 0.0;
93 }
94 for (i = 0; i < 3; i++)
95 vpos[i] *= trim[i];
96 }
97 /* compute direction */
98 for (i = 0; i < 3; i++)
99 r->rdir[i] = source[si->sn].sloc[i] +
100 vpos[SU]*source[si->sn].ss[SU][i] +
101 vpos[SV]*source[si->sn].ss[SV][i] +
102 vpos[SW]*source[si->sn].ss[SW][i];
103
104 if (!(source[si->sn].sflags & SDISTANT))
105 for (i = 0; i < 3; i++)
106 r->rdir[i] -= r->rorg[i];
107 /* compute distance */
108 if ((d = normalize(r->rdir)) == 0.0)
109 goto nextsample; /* at source! */
110
111 /* compute sample size */
112 if (source[si->sn].sflags & SFLAT) {
113 si->dom = sflatform(si->sn, r->rdir);
114 si->dom *= size[SU]*size[SV]/(MAXSPART*(double)MAXSPART);
115 } else if (source[si->sn].sflags & SCYL) {
116 si->dom = scylform(si->sn, r->rdir);
117 si->dom *= size[SU]/(double)MAXSPART;
118 } else {
119 si->dom = size[SU]*size[SV]*(double)size[SW] /
120 (MAXSPART*MAXSPART*(double)MAXSPART) ;
121 }
122 if (source[si->sn].sflags & SDISTANT) {
123 si->dom *= source[si->sn].ss2;
124 return(FHUGE);
125 }
126 if (si->dom <= 1e-4)
127 goto nextsample; /* behind source? */
128 si->dom *= source[si->sn].ss2/(d*d);
129 return(d); /* sample OK, return distance */
130 }
131
132
133 int
134 skipparts(ct, sz, pp, pt) /* skip to requested partition */
135 int ct[3], sz[3]; /* center and size of partition (returned) */
136 register int pp[2]; /* current index, number to skip (modified) */
137 unsigned char *pt; /* partition array */
138 {
139 register int p;
140 /* check this partition */
141 p = spart(pt, pp[0]);
142 pp[0]++;
143 if (p == S0) { /* leaf partition */
144 if (pp[1]) {
145 pp[1]--;
146 return(0); /* not there yet */
147 } else
148 return(1); /* we've arrived */
149 }
150 /* else check lower */
151 sz[p] >>= 1;
152 ct[p] -= sz[p];
153 if (skipparts(ct, sz, pp, pt))
154 return(1); /* return hit */
155 /* else check upper */
156 ct[p] += sz[p] << 1;
157 if (skipparts(ct, sz, pp, pt))
158 return(1); /* return hit */
159 /* else return to starting position */
160 ct[p] -= sz[p];
161 sz[p] <<= 1;
162 return(0); /* return miss */
163 }
164
165
166 void
167 nopart(si, r) /* single source partition */
168 register SRCINDEX *si;
169 RAY *r;
170 {
171 clrpart(si->spt);
172 setpart(si->spt, 0, S0);
173 si->np = 1;
174 }
175
176
177 void
178 cylpart(si, r) /* partition a cylinder */
179 SRCINDEX *si;
180 register RAY *r;
181 {
182 double dist2, safedist2, dist2cent, rad2;
183 FVECT v;
184 register SRCREC *sp;
185 int pi;
186 /* first check point location */
187 clrpart(si->spt);
188 sp = source + si->sn;
189 rad2 = 1.365 * DOT(sp->ss[SV],sp->ss[SV]);
190 v[0] = r->rorg[0] - sp->sloc[0];
191 v[1] = r->rorg[1] - sp->sloc[1];
192 v[2] = r->rorg[2] - sp->sloc[2];
193 dist2 = DOT(v,sp->ss[SU]);
194 safedist2 = DOT(sp->ss[SU],sp->ss[SU]);
195 dist2 *= dist2 / safedist2;
196 dist2cent = DOT(v,v);
197 dist2 = dist2cent - dist2;
198 if (dist2 <= rad2) { /* point inside extended cylinder */
199 si->np = 0;
200 return;
201 }
202 safedist2 *= 4.*r->rweight*r->rweight/(srcsizerat*srcsizerat);
203 if (dist2 <= 4.*rad2 || /* point too close to subdivide */
204 dist2cent >= safedist2) { /* or too far */
205 setpart(si->spt, 0, S0);
206 si->np = 1;
207 return;
208 }
209 pi = 0;
210 si->np = cyl_partit(r->rorg, si->spt, &pi, MAXSPART,
211 sp->sloc, sp->ss[SU], safedist2);
212 }
213
214
215 static int
216 cyl_partit(ro, pt, pi, mp, cent, axis, d2) /* slice a cylinder */
217 FVECT ro;
218 unsigned char *pt;
219 register int *pi;
220 int mp;
221 FVECT cent, axis;
222 double d2;
223 {
224 FVECT newct, newax;
225 int npl, npu;
226
227 if (mp < 2 || dist2(ro, cent) >= d2) { /* hit limit? */
228 setpart(pt, *pi, S0);
229 (*pi)++;
230 return(1);
231 }
232 /* subdivide */
233 setpart(pt, *pi, SU);
234 (*pi)++;
235 newax[0] = .5*axis[0];
236 newax[1] = .5*axis[1];
237 newax[2] = .5*axis[2];
238 d2 *= 0.25;
239 /* lower half */
240 newct[0] = cent[0] - newax[0];
241 newct[1] = cent[1] - newax[1];
242 newct[2] = cent[2] - newax[2];
243 npl = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
244 /* upper half */
245 newct[0] = cent[0] + newax[0];
246 newct[1] = cent[1] + newax[1];
247 newct[2] = cent[2] + newax[2];
248 npu = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
249 /* return total */
250 return(npl + npu);
251 }
252
253
254 void
255 flatpart(si, r) /* partition a flat source */
256 register SRCINDEX *si;
257 register RAY *r;
258 {
259 register RREAL *vp;
260 FVECT v;
261 double du2, dv2;
262 int pi;
263
264 clrpart(si->spt);
265 vp = source[si->sn].sloc;
266 v[0] = r->rorg[0] - vp[0];
267 v[1] = r->rorg[1] - vp[1];
268 v[2] = r->rorg[2] - vp[2];
269 vp = source[si->sn].snorm;
270 if (DOT(v,vp) <= 0.) { /* behind source */
271 si->np = 0;
272 return;
273 }
274 dv2 = 2.*r->rweight/srcsizerat;
275 dv2 *= dv2;
276 vp = source[si->sn].ss[SU];
277 du2 = dv2 * DOT(vp,vp);
278 vp = source[si->sn].ss[SV];
279 dv2 *= DOT(vp,vp);
280 pi = 0;
281 si->np = flt_partit(r->rorg, si->spt, &pi, MAXSPART,
282 source[si->sn].sloc,
283 source[si->sn].ss[SU], source[si->sn].ss[SV], du2, dv2);
284 }
285
286
287 static int
288 flt_partit(ro, pt, pi, mp, cent, u, v, du2, dv2) /* partition flatty */
289 FVECT ro;
290 unsigned char *pt;
291 register int *pi;
292 int mp;
293 FVECT cent, u, v;
294 double du2, dv2;
295 {
296 double d2;
297 FVECT newct, newax;
298 int npl, npu;
299
300 if (mp < 2 || ((d2 = dist2(ro, cent)) >= du2
301 && d2 >= dv2)) { /* hit limit? */
302 setpart(pt, *pi, S0);
303 (*pi)++;
304 return(1);
305 }
306 if (du2 > dv2) { /* subdivide in U */
307 setpart(pt, *pi, SU);
308 (*pi)++;
309 newax[0] = .5*u[0];
310 newax[1] = .5*u[1];
311 newax[2] = .5*u[2];
312 u = newax;
313 du2 *= 0.25;
314 } else { /* subdivide in V */
315 setpart(pt, *pi, SV);
316 (*pi)++;
317 newax[0] = .5*v[0];
318 newax[1] = .5*v[1];
319 newax[2] = .5*v[2];
320 v = newax;
321 dv2 *= 0.25;
322 }
323 /* lower half */
324 newct[0] = cent[0] - newax[0];
325 newct[1] = cent[1] - newax[1];
326 newct[2] = cent[2] - newax[2];
327 npl = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
328 /* upper half */
329 newct[0] = cent[0] + newax[0];
330 newct[1] = cent[1] + newax[1];
331 newct[2] = cent[2] + newax[2];
332 npu = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
333 /* return total */
334 return(npl + npu);
335 }
336
337
338 double
339 scylform(sn, dir) /* compute cosine for cylinder's projection */
340 int sn;
341 register FVECT dir; /* assume normalized */
342 {
343 register RREAL *dv;
344 double d;
345
346 dv = source[sn].ss[SU];
347 d = DOT(dir, dv);
348 d *= d / DOT(dv,dv);
349 return(sqrt(1. - d));
350 }