ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsamp.c
Revision: 2.14
Committed: Wed Dec 10 07:07:07 2008 UTC (15 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.13: +1 -2 lines
Log Message:
Removed redundant variable definition

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: srcsamp.c,v 2.13 2008/12/07 19:25:23 greg Exp $";
3 #endif
4 /*
5 * Source sampling routines
6 *
7 * External symbols declared in source.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "source.h"
15
16 #include "random.h"
17
18
19 static int cyl_partit(), flt_partit();
20
21
22 double
23 nextssamp(r, si) /* compute sample for source, rtn. distance */
24 register RAY *r; /* origin is read, direction is set */
25 register SRCINDEX *si; /* source index (modified to current) */
26 {
27 int cent[3], size[3], parr[2];
28 FVECT vpos;
29 double d;
30 register int i;
31 nextsample:
32 while (++si->sp >= si->np) { /* get next sample */
33 if (++si->sn >= nsources)
34 return(0.0); /* no more */
35 if (source[si->sn].sflags & SSKIP)
36 si->np = 0;
37 else if (srcsizerat <= FTINY)
38 nopart(si, r);
39 else {
40 for (i = si->sn; source[i].sflags & SVIRTUAL;
41 i = source[i].sa.sv.sn)
42 ; /* partition source */
43 (*sfun[source[i].so->otype].of->partit)(si, r);
44 }
45 si->sp = -1;
46 }
47 /* get partition */
48 cent[0] = cent[1] = cent[2] = 0;
49 size[0] = size[1] = size[2] = MAXSPART;
50 parr[0] = 0; parr[1] = si->sp;
51 if (!skipparts(cent, size, parr, si->spt))
52 error(CONSISTENCY, "bad source partition in nextssamp");
53 /* compute sample */
54 if (dstrsrc > FTINY) { /* jitter sample */
55 dimlist[ndims] = si->sn + 8831;
56 dimlist[ndims+1] = si->sp + 3109;
57 d = urand(ilhash(dimlist,ndims+2)+samplendx);
58 if (source[si->sn].sflags & SFLAT) {
59 multisamp(vpos, 2, d);
60 vpos[SW] = 0.5;
61 } else
62 multisamp(vpos, 3, d);
63 for (i = 0; i < 3; i++)
64 vpos[i] = dstrsrc * (1. - 2.*vpos[i]) *
65 (double)size[i]/MAXSPART;
66 } else
67 vpos[0] = vpos[1] = vpos[2] = 0.0;
68
69 for (i = 0; i < 3; i++)
70 vpos[i] += (double)cent[i]/MAXSPART;
71 /* avoid circular aiming failures */
72 if ((source[si->sn].sflags & SCIR) && (si->np > 1 || dstrsrc > 0.7)) {
73 FVECT trim;
74 if (source[si->sn].sflags & (SFLAT|SDISTANT)) {
75 d = 1.12837917; /* correct setflatss() */
76 trim[SU] = d*sqrt(1.0 - 0.5*vpos[SV]*vpos[SV]);
77 trim[SV] = d*sqrt(1.0 - 0.5*vpos[SU]*vpos[SU]);
78 trim[SW] = 0.0;
79 } else {
80 trim[SW] = trim[SU] = vpos[SU]*vpos[SU];
81 d = vpos[SV]*vpos[SV];
82 if (d > trim[SW]) trim[SW] = d;
83 trim[SU] += d;
84 d = vpos[SW]*vpos[SW];
85 if (d > trim[SW]) trim[SW] = d;
86 trim[SU] += d;
87 d = 1.0/0.7236; /* correct sphsetsrc() */
88 trim[SW] = trim[SV] = trim[SU] =
89 d*sqrt(trim[SW]/trim[SU]);
90 }
91 for (i = 0; i < 3; i++)
92 vpos[i] *= trim[i];
93 }
94 /* compute direction */
95 for (i = 0; i < 3; i++)
96 r->rdir[i] = source[si->sn].sloc[i] +
97 vpos[SU]*source[si->sn].ss[SU][i] +
98 vpos[SV]*source[si->sn].ss[SV][i] +
99 vpos[SW]*source[si->sn].ss[SW][i];
100
101 if (!(source[si->sn].sflags & SDISTANT))
102 for (i = 0; i < 3; i++)
103 r->rdir[i] -= r->rorg[i];
104 /* compute distance */
105 if ((d = normalize(r->rdir)) == 0.0)
106 goto nextsample; /* at source! */
107
108 /* compute sample size */
109 if (source[si->sn].sflags & SFLAT) {
110 si->dom = sflatform(si->sn, r->rdir);
111 si->dom *= size[SU]*size[SV]/(MAXSPART*(double)MAXSPART);
112 } else if (source[si->sn].sflags & SCYL) {
113 si->dom = scylform(si->sn, r->rdir);
114 si->dom *= size[SU]/(double)MAXSPART;
115 } else {
116 si->dom = size[SU]*size[SV]*(double)size[SW] /
117 (MAXSPART*MAXSPART*(double)MAXSPART) ;
118 }
119 if (source[si->sn].sflags & SDISTANT) {
120 si->dom *= source[si->sn].ss2;
121 return(FHUGE);
122 }
123 if (si->dom <= 1e-4)
124 goto nextsample; /* behind source? */
125 si->dom *= source[si->sn].ss2/(d*d);
126 return(d); /* sample OK, return distance */
127 }
128
129
130 int
131 skipparts(ct, sz, pp, pt) /* skip to requested partition */
132 int ct[3], sz[3]; /* center and size of partition (returned) */
133 register int pp[2]; /* current index, number to skip (modified) */
134 unsigned char *pt; /* partition array */
135 {
136 register int p;
137 /* check this partition */
138 p = spart(pt, pp[0]);
139 pp[0]++;
140 if (p == S0) { /* leaf partition */
141 if (pp[1]) {
142 pp[1]--;
143 return(0); /* not there yet */
144 } else
145 return(1); /* we've arrived */
146 }
147 /* else check lower */
148 sz[p] >>= 1;
149 ct[p] -= sz[p];
150 if (skipparts(ct, sz, pp, pt))
151 return(1); /* return hit */
152 /* else check upper */
153 ct[p] += sz[p] << 1;
154 if (skipparts(ct, sz, pp, pt))
155 return(1); /* return hit */
156 /* else return to starting position */
157 ct[p] -= sz[p];
158 sz[p] <<= 1;
159 return(0); /* return miss */
160 }
161
162
163 void
164 nopart(si, r) /* single source partition */
165 register SRCINDEX *si;
166 RAY *r;
167 {
168 clrpart(si->spt);
169 setpart(si->spt, 0, S0);
170 si->np = 1;
171 }
172
173
174 void
175 cylpart(si, r) /* partition a cylinder */
176 SRCINDEX *si;
177 register RAY *r;
178 {
179 double dist2, safedist2, dist2cent, rad2;
180 FVECT v;
181 register SRCREC *sp;
182 int pi;
183 /* first check point location */
184 clrpart(si->spt);
185 sp = source + si->sn;
186 rad2 = 1.365 * DOT(sp->ss[SV],sp->ss[SV]);
187 v[0] = r->rorg[0] - sp->sloc[0];
188 v[1] = r->rorg[1] - sp->sloc[1];
189 v[2] = r->rorg[2] - sp->sloc[2];
190 dist2 = DOT(v,sp->ss[SU]);
191 safedist2 = DOT(sp->ss[SU],sp->ss[SU]);
192 dist2 *= dist2 / safedist2;
193 dist2cent = DOT(v,v);
194 dist2 = dist2cent - dist2;
195 if (dist2 <= rad2) { /* point inside extended cylinder */
196 si->np = 0;
197 return;
198 }
199 safedist2 *= 4.*r->rweight*r->rweight/(srcsizerat*srcsizerat);
200 if (dist2 <= 4.*rad2 || /* point too close to subdivide */
201 dist2cent >= safedist2) { /* or too far */
202 setpart(si->spt, 0, S0);
203 si->np = 1;
204 return;
205 }
206 pi = 0;
207 si->np = cyl_partit(r->rorg, si->spt, &pi, MAXSPART,
208 sp->sloc, sp->ss[SU], safedist2);
209 }
210
211
212 static int
213 cyl_partit(ro, pt, pi, mp, cent, axis, d2) /* slice a cylinder */
214 FVECT ro;
215 unsigned char *pt;
216 register int *pi;
217 int mp;
218 FVECT cent, axis;
219 double d2;
220 {
221 FVECT newct, newax;
222 int npl, npu;
223
224 if (mp < 2 || dist2(ro, cent) >= d2) { /* hit limit? */
225 setpart(pt, *pi, S0);
226 (*pi)++;
227 return(1);
228 }
229 /* subdivide */
230 setpart(pt, *pi, SU);
231 (*pi)++;
232 newax[0] = .5*axis[0];
233 newax[1] = .5*axis[1];
234 newax[2] = .5*axis[2];
235 d2 *= 0.25;
236 /* lower half */
237 newct[0] = cent[0] - newax[0];
238 newct[1] = cent[1] - newax[1];
239 newct[2] = cent[2] - newax[2];
240 npl = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
241 /* upper half */
242 newct[0] = cent[0] + newax[0];
243 newct[1] = cent[1] + newax[1];
244 newct[2] = cent[2] + newax[2];
245 npu = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
246 /* return total */
247 return(npl + npu);
248 }
249
250
251 void
252 flatpart(si, r) /* partition a flat source */
253 register SRCINDEX *si;
254 register RAY *r;
255 {
256 register RREAL *vp;
257 FVECT v;
258 double du2, dv2;
259 int pi;
260
261 clrpart(si->spt);
262 vp = source[si->sn].sloc;
263 v[0] = r->rorg[0] - vp[0];
264 v[1] = r->rorg[1] - vp[1];
265 v[2] = r->rorg[2] - vp[2];
266 vp = source[si->sn].snorm;
267 if (DOT(v,vp) <= 0.) { /* behind source */
268 si->np = 0;
269 return;
270 }
271 dv2 = 2.*r->rweight/srcsizerat;
272 dv2 *= dv2;
273 vp = source[si->sn].ss[SU];
274 du2 = dv2 * DOT(vp,vp);
275 vp = source[si->sn].ss[SV];
276 dv2 *= DOT(vp,vp);
277 pi = 0;
278 si->np = flt_partit(r->rorg, si->spt, &pi, MAXSPART,
279 source[si->sn].sloc,
280 source[si->sn].ss[SU], source[si->sn].ss[SV], du2, dv2);
281 }
282
283
284 static int
285 flt_partit(ro, pt, pi, mp, cent, u, v, du2, dv2) /* partition flatty */
286 FVECT ro;
287 unsigned char *pt;
288 register int *pi;
289 int mp;
290 FVECT cent, u, v;
291 double du2, dv2;
292 {
293 double d2;
294 FVECT newct, newax;
295 int npl, npu;
296
297 if (mp < 2 || ((d2 = dist2(ro, cent)) >= du2
298 && d2 >= dv2)) { /* hit limit? */
299 setpart(pt, *pi, S0);
300 (*pi)++;
301 return(1);
302 }
303 if (du2 > dv2) { /* subdivide in U */
304 setpart(pt, *pi, SU);
305 (*pi)++;
306 newax[0] = .5*u[0];
307 newax[1] = .5*u[1];
308 newax[2] = .5*u[2];
309 u = newax;
310 du2 *= 0.25;
311 } else { /* subdivide in V */
312 setpart(pt, *pi, SV);
313 (*pi)++;
314 newax[0] = .5*v[0];
315 newax[1] = .5*v[1];
316 newax[2] = .5*v[2];
317 v = newax;
318 dv2 *= 0.25;
319 }
320 /* lower half */
321 newct[0] = cent[0] - newax[0];
322 newct[1] = cent[1] - newax[1];
323 newct[2] = cent[2] - newax[2];
324 npl = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
325 /* upper half */
326 newct[0] = cent[0] + newax[0];
327 newct[1] = cent[1] + newax[1];
328 newct[2] = cent[2] + newax[2];
329 npu = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
330 /* return total */
331 return(npl + npu);
332 }
333
334
335 double
336 scylform(sn, dir) /* compute cosine for cylinder's projection */
337 int sn;
338 register FVECT dir; /* assume normalized */
339 {
340 register RREAL *dv;
341 double d;
342
343 dv = source[sn].ss[SU];
344 d = DOT(dir, dv);
345 d *= d / DOT(dv,dv);
346 return(sqrt(1. - d));
347 }