ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/srcsamp.c
Revision: 2.14
Committed: Wed Dec 10 07:07:07 2008 UTC (15 years, 4 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.13: +1 -2 lines
Log Message:
Removed redundant variable definition

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.14 static const char RCSid[] = "$Id: srcsamp.c,v 2.13 2008/12/07 19:25:23 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Source sampling routines
6 greg 2.7 *
7     * External symbols declared in source.h
8     */
9    
10 greg 2.8 #include "copyright.h"
11 greg 1.1
12 greg 1.4 #include "ray.h"
13 greg 1.1
14     #include "source.h"
15    
16     #include "random.h"
17    
18    
19 greg 2.5 static int cyl_partit(), flt_partit();
20    
21    
22 greg 1.1 double
23 greg 1.4 nextssamp(r, si) /* compute sample for source, rtn. distance */
24     register RAY *r; /* origin is read, direction is set */
25 greg 1.1 register SRCINDEX *si; /* source index (modified to current) */
26     {
27     int cent[3], size[3], parr[2];
28     FVECT vpos;
29     double d;
30     register int i;
31 greg 2.2 nextsample:
32 greg 1.1 while (++si->sp >= si->np) { /* get next sample */
33     if (++si->sn >= nsources)
34     return(0.0); /* no more */
35 greg 1.7 if (source[si->sn].sflags & SSKIP)
36     si->np = 0;
37     else if (srcsizerat <= FTINY)
38 greg 1.4 nopart(si, r);
39 greg 1.1 else {
40     for (i = si->sn; source[i].sflags & SVIRTUAL;
41     i = source[i].sa.sv.sn)
42     ; /* partition source */
43 greg 1.4 (*sfun[source[i].so->otype].of->partit)(si, r);
44 greg 1.1 }
45     si->sp = -1;
46     }
47     /* get partition */
48     cent[0] = cent[1] = cent[2] = 0;
49     size[0] = size[1] = size[2] = MAXSPART;
50     parr[0] = 0; parr[1] = si->sp;
51     if (!skipparts(cent, size, parr, si->spt))
52     error(CONSISTENCY, "bad source partition in nextssamp");
53     /* compute sample */
54     if (dstrsrc > FTINY) { /* jitter sample */
55     dimlist[ndims] = si->sn + 8831;
56     dimlist[ndims+1] = si->sp + 3109;
57     d = urand(ilhash(dimlist,ndims+2)+samplendx);
58     if (source[si->sn].sflags & SFLAT) {
59     multisamp(vpos, 2, d);
60 greg 2.12 vpos[SW] = 0.5;
61 greg 1.1 } else
62     multisamp(vpos, 3, d);
63     for (i = 0; i < 3; i++)
64     vpos[i] = dstrsrc * (1. - 2.*vpos[i]) *
65     (double)size[i]/MAXSPART;
66     } else
67     vpos[0] = vpos[1] = vpos[2] = 0.0;
68    
69     for (i = 0; i < 3; i++)
70     vpos[i] += (double)cent[i]/MAXSPART;
71 greg 2.12 /* avoid circular aiming failures */
72 greg 2.13 if ((source[si->sn].sflags & SCIR) && (si->np > 1 || dstrsrc > 0.7)) {
73 greg 2.12 FVECT trim;
74     if (source[si->sn].sflags & (SFLAT|SDISTANT)) {
75     d = 1.12837917; /* correct setflatss() */
76     trim[SU] = d*sqrt(1.0 - 0.5*vpos[SV]*vpos[SV]);
77     trim[SV] = d*sqrt(1.0 - 0.5*vpos[SU]*vpos[SU]);
78     trim[SW] = 0.0;
79     } else {
80     trim[SW] = trim[SU] = vpos[SU]*vpos[SU];
81     d = vpos[SV]*vpos[SV];
82     if (d > trim[SW]) trim[SW] = d;
83     trim[SU] += d;
84     d = vpos[SW]*vpos[SW];
85     if (d > trim[SW]) trim[SW] = d;
86     trim[SU] += d;
87     d = 1.0/0.7236; /* correct sphsetsrc() */
88     trim[SW] = trim[SV] = trim[SU] =
89     d*sqrt(trim[SW]/trim[SU]);
90     }
91     for (i = 0; i < 3; i++)
92     vpos[i] *= trim[i];
93     }
94 greg 1.1 /* compute direction */
95     for (i = 0; i < 3; i++)
96 greg 1.4 r->rdir[i] = source[si->sn].sloc[i] +
97 greg 1.1 vpos[SU]*source[si->sn].ss[SU][i] +
98     vpos[SV]*source[si->sn].ss[SV][i] +
99     vpos[SW]*source[si->sn].ss[SW][i];
100    
101     if (!(source[si->sn].sflags & SDISTANT))
102     for (i = 0; i < 3; i++)
103 greg 1.4 r->rdir[i] -= r->rorg[i];
104 greg 1.1 /* compute distance */
105 greg 1.4 if ((d = normalize(r->rdir)) == 0.0)
106 greg 2.2 goto nextsample; /* at source! */
107 greg 1.1
108     /* compute sample size */
109     if (source[si->sn].sflags & SFLAT) {
110 greg 2.6 si->dom = sflatform(si->sn, r->rdir);
111 greg 2.4 si->dom *= size[SU]*size[SV]/(MAXSPART*(double)MAXSPART);
112 greg 1.1 } else if (source[si->sn].sflags & SCYL) {
113 greg 2.6 si->dom = scylform(si->sn, r->rdir);
114 greg 2.4 si->dom *= size[SU]/(double)MAXSPART;
115 greg 1.1 } else {
116 greg 2.6 si->dom = size[SU]*size[SV]*(double)size[SW] /
117 greg 2.4 (MAXSPART*MAXSPART*(double)MAXSPART) ;
118 greg 1.1 }
119 greg 2.6 if (source[si->sn].sflags & SDISTANT) {
120     si->dom *= source[si->sn].ss2;
121 greg 1.1 return(FHUGE);
122 greg 2.6 }
123 greg 2.3 if (si->dom <= 1e-4)
124 greg 2.2 goto nextsample; /* behind source? */
125 greg 2.6 si->dom *= source[si->sn].ss2/(d*d);
126 greg 1.1 return(d); /* sample OK, return distance */
127     }
128    
129    
130 greg 2.7 int
131 greg 1.1 skipparts(ct, sz, pp, pt) /* skip to requested partition */
132     int ct[3], sz[3]; /* center and size of partition (returned) */
133     register int pp[2]; /* current index, number to skip (modified) */
134     unsigned char *pt; /* partition array */
135     {
136     register int p;
137     /* check this partition */
138     p = spart(pt, pp[0]);
139     pp[0]++;
140 schorsch 2.10 if (p == S0) { /* leaf partition */
141 greg 1.1 if (pp[1]) {
142     pp[1]--;
143     return(0); /* not there yet */
144     } else
145     return(1); /* we've arrived */
146 schorsch 2.10 }
147 greg 1.1 /* else check lower */
148     sz[p] >>= 1;
149     ct[p] -= sz[p];
150     if (skipparts(ct, sz, pp, pt))
151     return(1); /* return hit */
152     /* else check upper */
153     ct[p] += sz[p] << 1;
154     if (skipparts(ct, sz, pp, pt))
155     return(1); /* return hit */
156     /* else return to starting position */
157     ct[p] -= sz[p];
158     sz[p] <<= 1;
159     return(0); /* return miss */
160     }
161    
162    
163 greg 2.7 void
164 greg 1.4 nopart(si, r) /* single source partition */
165 greg 1.1 register SRCINDEX *si;
166 greg 1.4 RAY *r;
167 greg 1.1 {
168     clrpart(si->spt);
169     setpart(si->spt, 0, S0);
170     si->np = 1;
171     }
172    
173    
174 greg 2.7 void
175 greg 1.4 cylpart(si, r) /* partition a cylinder */
176 greg 1.1 SRCINDEX *si;
177 greg 1.4 register RAY *r;
178 greg 1.1 {
179     double dist2, safedist2, dist2cent, rad2;
180     FVECT v;
181     register SRCREC *sp;
182     int pi;
183     /* first check point location */
184     clrpart(si->spt);
185 greg 1.4 sp = source + si->sn;
186 greg 1.3 rad2 = 1.365 * DOT(sp->ss[SV],sp->ss[SV]);
187 greg 1.4 v[0] = r->rorg[0] - sp->sloc[0];
188     v[1] = r->rorg[1] - sp->sloc[1];
189     v[2] = r->rorg[2] - sp->sloc[2];
190 greg 1.1 dist2 = DOT(v,sp->ss[SU]);
191     safedist2 = DOT(sp->ss[SU],sp->ss[SU]);
192     dist2 *= dist2 / safedist2;
193     dist2cent = DOT(v,v);
194     dist2 = dist2cent - dist2;
195     if (dist2 <= rad2) { /* point inside extended cylinder */
196     si->np = 0;
197     return;
198     }
199 greg 1.4 safedist2 *= 4.*r->rweight*r->rweight/(srcsizerat*srcsizerat);
200 greg 1.5 if (dist2 <= 4.*rad2 || /* point too close to subdivide */
201     dist2cent >= safedist2) { /* or too far */
202 greg 1.1 setpart(si->spt, 0, S0);
203     si->np = 1;
204     return;
205     }
206     pi = 0;
207 greg 1.4 si->np = cyl_partit(r->rorg, si->spt, &pi, MAXSPART,
208 greg 1.1 sp->sloc, sp->ss[SU], safedist2);
209     }
210    
211    
212     static int
213     cyl_partit(ro, pt, pi, mp, cent, axis, d2) /* slice a cylinder */
214     FVECT ro;
215     unsigned char *pt;
216     register int *pi;
217     int mp;
218     FVECT cent, axis;
219     double d2;
220     {
221     FVECT newct, newax;
222     int npl, npu;
223    
224     if (mp < 2 || dist2(ro, cent) >= d2) { /* hit limit? */
225     setpart(pt, *pi, S0);
226     (*pi)++;
227     return(1);
228     }
229     /* subdivide */
230     setpart(pt, *pi, SU);
231     (*pi)++;
232     newax[0] = .5*axis[0];
233     newax[1] = .5*axis[1];
234     newax[2] = .5*axis[2];
235     d2 *= 0.25;
236     /* lower half */
237     newct[0] = cent[0] - newax[0];
238     newct[1] = cent[1] - newax[1];
239     newct[2] = cent[2] - newax[2];
240 greg 1.2 npl = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
241 greg 1.1 /* upper half */
242     newct[0] = cent[0] + newax[0];
243     newct[1] = cent[1] + newax[1];
244     newct[2] = cent[2] + newax[2];
245 greg 1.2 npu = cyl_partit(ro, pt, pi, mp/2, newct, newax, d2);
246 greg 1.1 /* return total */
247     return(npl + npu);
248     }
249    
250    
251 greg 2.7 void
252 greg 1.4 flatpart(si, r) /* partition a flat source */
253 greg 1.1 register SRCINDEX *si;
254 greg 1.5 register RAY *r;
255 greg 1.1 {
256 schorsch 2.9 register RREAL *vp;
257 greg 1.5 FVECT v;
258 greg 1.1 double du2, dv2;
259     int pi;
260    
261 greg 1.5 clrpart(si->spt);
262     vp = source[si->sn].sloc;
263     v[0] = r->rorg[0] - vp[0];
264     v[1] = r->rorg[1] - vp[1];
265     v[2] = r->rorg[2] - vp[2];
266     vp = source[si->sn].snorm;
267 greg 2.11 if (DOT(v,vp) <= 0.) { /* behind source */
268 greg 1.5 si->np = 0;
269     return;
270     }
271 greg 1.4 dv2 = 2.*r->rweight/srcsizerat;
272     dv2 *= dv2;
273 greg 1.1 vp = source[si->sn].ss[SU];
274 greg 1.4 du2 = dv2 * DOT(vp,vp);
275 greg 1.1 vp = source[si->sn].ss[SV];
276 greg 1.4 dv2 *= DOT(vp,vp);
277 greg 1.1 pi = 0;
278 greg 1.4 si->np = flt_partit(r->rorg, si->spt, &pi, MAXSPART,
279     source[si->sn].sloc,
280 greg 1.1 source[si->sn].ss[SU], source[si->sn].ss[SV], du2, dv2);
281     }
282    
283    
284     static int
285     flt_partit(ro, pt, pi, mp, cent, u, v, du2, dv2) /* partition flatty */
286     FVECT ro;
287     unsigned char *pt;
288     register int *pi;
289     int mp;
290     FVECT cent, u, v;
291     double du2, dv2;
292     {
293     double d2;
294     FVECT newct, newax;
295     int npl, npu;
296    
297     if (mp < 2 || ((d2 = dist2(ro, cent)) >= du2
298     && d2 >= dv2)) { /* hit limit? */
299     setpart(pt, *pi, S0);
300     (*pi)++;
301     return(1);
302     }
303     if (du2 > dv2) { /* subdivide in U */
304     setpart(pt, *pi, SU);
305     (*pi)++;
306     newax[0] = .5*u[0];
307     newax[1] = .5*u[1];
308     newax[2] = .5*u[2];
309     u = newax;
310     du2 *= 0.25;
311     } else { /* subdivide in V */
312     setpart(pt, *pi, SV);
313     (*pi)++;
314     newax[0] = .5*v[0];
315     newax[1] = .5*v[1];
316     newax[2] = .5*v[2];
317     v = newax;
318     dv2 *= 0.25;
319     }
320     /* lower half */
321     newct[0] = cent[0] - newax[0];
322     newct[1] = cent[1] - newax[1];
323     newct[2] = cent[2] - newax[2];
324 greg 1.2 npl = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
325 greg 1.1 /* upper half */
326     newct[0] = cent[0] + newax[0];
327     newct[1] = cent[1] + newax[1];
328     newct[2] = cent[2] + newax[2];
329 greg 1.2 npu = flt_partit(ro, pt, pi, mp/2, newct, u, v, du2, dv2);
330 greg 1.1 /* return total */
331     return(npl + npu);
332     }
333    
334    
335     double
336     scylform(sn, dir) /* compute cosine for cylinder's projection */
337     int sn;
338     register FVECT dir; /* assume normalized */
339     {
340 schorsch 2.9 register RREAL *dv;
341 greg 1.1 double d;
342    
343     dv = source[sn].ss[SU];
344     d = DOT(dir, dv);
345     d *= d / DOT(dv,dv);
346     return(sqrt(1. - d));
347     }