#ifndef lint static const char RCSid[] = "$Id: sphere.c,v 2.4 2003/02/25 02:47:23 greg Exp $"; #endif /* * sphere.c - compute ray intersection with spheres. */ #include "copyright.h" #include "ray.h" #include "otypes.h" o_sphere(so, r) /* compute intersection with sphere */ OBJREC *so; register RAY *r; { double a, b, c; /* coefficients for quadratic equation */ double root[2]; /* quadratic roots */ int nroots; double t; register FLOAT *ap; register int i; if (so->oargs.nfargs != 4) objerror(so, USER, "bad # arguments"); ap = so->oargs.farg; if (ap[3] < -FTINY) { objerror(so, WARNING, "negative radius"); so->otype = so->otype == OBJ_SPHERE ? OBJ_BUBBLE : OBJ_SPHERE; ap[3] = -ap[3]; } else if (ap[3] <= FTINY) objerror(so, USER, "zero radius"); /* * We compute the intersection by substituting into * the surface equation for the sphere. The resulting * quadratic equation in t is then solved for the * smallest positive root, which is our point of * intersection. * Since the ray is normalized, a should always be * one. We compute it here to prevent instability in the * intersection calculation. */ /* compute quadratic coefficients */ a = b = c = 0.0; for (i = 0; i < 3; i++) { a += r->rdir[i]*r->rdir[i]; t = r->rorg[i] - ap[i]; b += 2.0*r->rdir[i]*t; c += t*t; } c -= ap[3] * ap[3]; nroots = quadratic(root, a, b, c); /* solve quadratic */ for (i = 0; i < nroots; i++) /* get smallest positive */ if ((t = root[i]) > FTINY) break; if (i >= nroots) return(0); /* no positive root */ if (t >= r->rot) return(0); /* other is closer */ r->ro = so; r->rot = t; /* compute normal */ a = ap[3]; if (so->otype == OBJ_BUBBLE) a = -a; /* reverse */ for (i = 0; i < 3; i++) { r->rop[i] = r->rorg[i] + r->rdir[i]*t; r->ron[i] = (r->rop[i] - ap[i]) / a; } r->rod = -DOT(r->rdir, r->ron); r->rox = NULL; return(1); /* hit */ }