/* Copyright (c) 1986 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * sphere.c - compute ray intersection with spheres. * * 8/19/85 */ #include "ray.h" #include "otypes.h" o_sphere(so, r) /* compute intersection with sphere */ OBJREC *so; register RAY *r; { double a, b, c; /* coefficients for quadratic equation */ double root[2]; /* quadratic roots */ int nroots; double t; register double *ap; register int i; if (so->oargs.nfargs != 4 || so->oargs.farg[3] <= FTINY) objerror(so, USER, "bad arguments"); ap = so->oargs.farg; /* * We compute the intersection by substituting into * the surface equation for the sphere. The resulting * quadratic equation in t is then solved for the * smallest positive root, which is our point of * intersection. * Because the ray direction is normalized, a is always 1. */ a = 1.0; /* compute quadratic coefficients */ b = c = 0.0; for (i = 0; i < 3; i++) { t = r->rorg[i] - ap[i]; b += 2.0*r->rdir[i]*t; c += t*t; } c -= ap[3] * ap[3]; nroots = quadratic(root, a, b, c); /* solve quadratic */ for (i = 0; i < nroots; i++) /* get smallest positive */ if ((t = root[i]) > FTINY) break; if (i >= nroots) return(0); /* no positive root */ if (t >= r->rot) return(0); /* other is closer */ r->ro = so; r->rot = t; /* compute normal */ a = ap[3]; if (so->otype == OBJ_BUBBLE) a = -a; /* reverse */ for (i = 0; i < 3; i++) { r->rop[i] = r->rorg[i] + r->rdir[i]*t; r->ron[i] = (r->rop[i] - ap[i]) / a; } r->rod = -DOT(r->rdir, r->ron); r->rofs = 1.0; setident4(r->rofx); r->robs = 1.0; setident4(r->robx); return(1); /* hit */ }