1 |
– |
/* Copyright (c) 1990 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* sphere.c - compute ray intersection with spheres. |
9 |
– |
* |
10 |
– |
* 8/19/85 |
6 |
|
*/ |
7 |
|
|
8 |
< |
#include "ray.h" |
8 |
> |
#include "copyright.h" |
9 |
|
|
10 |
+ |
#include "ray.h" |
11 |
|
#include "otypes.h" |
12 |
+ |
#include "rtotypes.h" |
13 |
|
|
14 |
|
|
15 |
< |
o_sphere(so, r) /* compute intersection with sphere */ |
16 |
< |
OBJREC *so; |
17 |
< |
register RAY *r; |
15 |
> |
int |
16 |
> |
o_sphere( /* compute intersection with sphere */ |
17 |
> |
OBJREC *so, |
18 |
> |
RAY *r |
19 |
> |
) |
20 |
|
{ |
21 |
|
double a, b, c; /* coefficients for quadratic equation */ |
22 |
|
double root[2]; /* quadratic roots */ |
23 |
|
int nroots; |
24 |
|
double t; |
25 |
< |
register double *ap; |
26 |
< |
register int i; |
25 |
> |
RREAL *ap; |
26 |
> |
int i; |
27 |
|
|
28 |
< |
if (so->oargs.nfargs != 4 || so->oargs.farg[3] <= FTINY) |
29 |
< |
objerror(so, USER, "bad arguments"); |
31 |
< |
|
28 |
> |
if (so->oargs.nfargs != 4) |
29 |
> |
objerror(so, USER, "bad # arguments"); |
30 |
|
ap = so->oargs.farg; |
31 |
+ |
if (ap[3] < -FTINY) { |
32 |
+ |
objerror(so, WARNING, "negative radius"); |
33 |
+ |
so->otype = so->otype == OBJ_SPHERE ? |
34 |
+ |
OBJ_BUBBLE : OBJ_SPHERE; |
35 |
+ |
ap[3] = -ap[3]; |
36 |
+ |
} else if (ap[3] <= FTINY) |
37 |
+ |
objerror(so, USER, "zero radius"); |
38 |
|
|
39 |
|
/* |
40 |
|
* We compute the intersection by substituting into |
42 |
|
* quadratic equation in t is then solved for the |
43 |
|
* smallest positive root, which is our point of |
44 |
|
* intersection. |
45 |
< |
* Because the ray direction is normalized, a is always 1. |
45 |
> |
* Since the ray is normalized, a should always be |
46 |
> |
* one. We compute it here to prevent instability in the |
47 |
> |
* intersection calculation. |
48 |
|
*/ |
49 |
< |
|
50 |
< |
a = 1.0; /* compute quadratic coefficients */ |
44 |
< |
b = c = 0.0; |
49 |
> |
/* compute quadratic coefficients */ |
50 |
> |
a = b = c = 0.0; |
51 |
|
for (i = 0; i < 3; i++) { |
52 |
+ |
a += r->rdir[i]*r->rdir[i]; |
53 |
|
t = r->rorg[i] - ap[i]; |
54 |
|
b += 2.0*r->rdir[i]*t; |
55 |
|
c += t*t; |
63 |
|
break; |
64 |
|
if (i >= nroots) |
65 |
|
return(0); /* no positive root */ |
66 |
+ |
if (rayreject(so, r, t)) |
67 |
+ |
return(0); /* previous hit better */ |
68 |
|
|
60 |
– |
if (t >= r->rot) |
61 |
– |
return(0); /* other is closer */ |
62 |
– |
|
69 |
|
r->ro = so; |
70 |
|
r->rot = t; |
71 |
|
/* compute normal */ |
78 |
|
} |
79 |
|
r->rod = -DOT(r->rdir, r->ron); |
80 |
|
r->rox = NULL; |
81 |
+ |
r->pert[0] = r->pert[1] = r->pert[2] = 0.0; |
82 |
+ |
r->uv[0] = r->uv[1] = 0.0; |
83 |
|
|
84 |
|
return(1); /* hit */ |
85 |
|
} |