--- ray/src/rt/sphere.c 1991/10/23 13:43:48 1.5 +++ ray/src/rt/sphere.c 2023/03/16 00:25:24 2.10 @@ -1,30 +1,29 @@ -/* Copyright (c) 1991 Regents of the University of California */ - #ifndef lint -static char SCCSid[] = "$SunId$ LBL"; +static const char RCSid[] = "$Id: sphere.c,v 2.10 2023/03/16 00:25:24 greg Exp $"; #endif - /* * sphere.c - compute ray intersection with spheres. - * - * 8/19/85 */ -#include "ray.h" +#include "copyright.h" +#include "ray.h" #include "otypes.h" +#include "rtotypes.h" -o_sphere(so, r) /* compute intersection with sphere */ -OBJREC *so; -register RAY *r; +int +o_sphere( /* compute intersection with sphere */ + OBJREC *so, + RAY *r +) { double a, b, c; /* coefficients for quadratic equation */ double root[2]; /* quadratic roots */ int nroots; double t; - register FLOAT *ap; - register int i; + RREAL *ap; + int i; if (so->oargs.nfargs != 4) objerror(so, USER, "bad # arguments"); @@ -43,12 +42,14 @@ register RAY *r; * quadratic equation in t is then solved for the * smallest positive root, which is our point of * intersection. - * Because the ray direction is normalized, a is always 1. + * Since the ray is normalized, a should always be + * one. We compute it here to prevent instability in the + * intersection calculation. */ - - a = 1.0; /* compute quadratic coefficients */ - b = c = 0.0; + /* compute quadratic coefficients */ + a = b = c = 0.0; for (i = 0; i < 3; i++) { + a += r->rdir[i]*r->rdir[i]; t = r->rorg[i] - ap[i]; b += 2.0*r->rdir[i]*t; c += t*t; @@ -62,10 +63,9 @@ register RAY *r; break; if (i >= nroots) return(0); /* no positive root */ + if (rayreject(so, r, t, 0)) + return(0); /* previous hit better */ - if (t >= r->rot) - return(0); /* other is closer */ - r->ro = so; r->rot = t; /* compute normal */ @@ -78,6 +78,8 @@ register RAY *r; } r->rod = -DOT(r->rdir, r->ron); r->rox = NULL; + r->pert[0] = r->pert[1] = r->pert[2] = 0.0; + r->uv[0] = r->uv[1] = 0.0; return(1); /* hit */ }